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Abstract

A spatiotemporal technique for checking the consis-
tency of stereo range results and integrating them over
time is presented. This technique is designed as part of
a passive ranging system whose goal is to produce range
images with as high a resolution as possible in order to
support the detection of as small objects as possible. The
basic approach is to minimize the application of spatial
aggregation operations, which reduce resolution, and to
apply a set of multiple-match consistency checks over
space and time to filter out mistakes. We present the
basic approach, describe two implementations of it (one
of which is a research-oriented system that runs on a
Connection Machine and the other of which runs on a
Sparcl0 and provides real-time feedback for SRI’s indoor
robot, Flakey), present an initial characterization of the
effectiveness of the technique, and conclude with ideas
for future work.

Introduction

The ultimate goal of this research is to develop pas-
sive range sensing techniques that provide the spatial
and depth resolutions required to detect small, but dan-
gerous, navigation obstacles, such as holes and medium-
sized rocks. Current feature-based techniques do not
provide dense enough results to detect these objects and
correlation-based stereo and motion systems typically
smooth over them. Correlation systems apply spatial
aggregation operations in three places, in image prepro-
cessing (e.g., performing Gaussian smoothing to reduce
image noise), in matching (e.g., using large correlation
windows to provide an ample statistical footing), and
in post processing (e.g., eliminating results that differ
significantly from their neighbors). These operations re-
duce the chance of errors, but they also dramatically
reduce the resolution of the results. Our approach, on
the other hand, is to minimize the use of spatial aggrega-
tion in order to maximize the resolution and to provide
an alternate set of filtering techniques to eliminate mis-
takes.

We propose a class of filtering strategies based on
checking the consistences of multiple in(ter)dependent

matches. The idea behind this class of strategies i1s the
same as that behind the consistency checking techniques
used in Moravec’s “slider stereo” [10], Hannah’s left-
to-right and right-to-left doublechecking [7], INRIA’s
trinocular filtering [1], and Kanade’s multi-image sum-
ming of SSD’s [16]. In this paper we introduce a natural
extension of these techniques to include spatiotemporal
consistency checking. Figure 1 shows the basic approach.
Each arrow represents an independent match from one
image to another. The system performs conventional
stereo disparity estimation from left to right and optical
flow estimation from present to past. The disparity esti-
mates are corroborated by performing an addtional right
to left stereo match and verifying that the left to right
result is the inverse of the right to left (the “left-right
check”), as in [7] and [6]. The optical flow estimates are
similarly corroborated by estimating the past to present
flow field (the “forward-back check”). If these checks fail
the matches are marked as invalid. In addition, since an
optical flow estimate is available for each pixel in both
cameras, the spatiotemporal transitivity of two stereo
estimates and two optical flow estimates can be checked
to insure that the four sided “loop” of matches is con-
sistent (the “loop check”). If the loop check fails, the
confidence in the individual matches is decreased. Va-
lidity information is associated with what we term “pixel
features,” instead of “pixels” or “features,” since the in-
formation is associated with a grid of pixels, but remains
in correspondence with moving scene features.

This spatiotemporal matching strategy provides a nat-
ural way of integrating local depth images over time.
As shown in Figure 2, the model of the scene i1s image-
centered. Each pixel-feature has assocated stereo dispar-
ity estimates, optical flow estimates and auxiliary infor-
mation describing the numbers and types of consistency
checks passed by the pixels. An advantage of this type
of scene modeling is that it avoids the need to explicitly
compute the 6 degree-of-freedom transforms that relate
one local 3D model to another, as shown in Figure 3.
Computing these transforms can be tricky when, for ex-
ample, there 1s motion in a scene, and computationally
expensive (e.g., see [13]). Our approach to integration
differs from most other approaches, however, in that it
does not provide a persistent global model of the scene.
Rather it provides an image-centered model of the cur-



Figure 1: Spatiotemporal multiple-match consistency checking.



rently visible surfaces of the scene objects. As objects
leave the field of view, they are lost. The information
produced by this type of modeling system could be pro-
vided as data to a more conventional global modeling
system.

The remainder of this paper is organized as follows.
In Section 2 we describe several techniques for attaining
credible stereo disparity estimates and discuss how they
relate to our consistency-checking approach. In Section
3, we describe an experimental system that makes use of
spatiotemporal consistency checking, and present exam-
ples of its use within a sensor system to support cross-
country navigation. In Section 4, we briefly describe
a second implementation of these ideas in a real-time
system for SRI’s indoor robot, Flakey. And finally, in
Section 5, we draw some conclusions and discuss ideas
for improvements and future work.

Attaining Credible Stereo Esti-
mates

Producing stereo disparity estimates is simple — for

each pixel on one image, find the best match under some
metric on the other image. Attaining credible disparity
estimates is a complex problem, to which there are many
approaches.
System Engineering: Constrain the environment
and/or the sensing system to eliminate or minimize
the impact of as many factors as possible. For exam-
ple, restrict the lighting to be from a well-modeled
source. This approach also includes techniques to
reduce the search region by calibrating the cam-
eras relative to one another. Smaller, more focused
search regions reduce the computation required to
find a match, and more importantly, reduce the
chance that the search might accidently locate an
image feature that happens to look more like the
desired feature than the real one.

Selective matching: Only attempt matches for fea-
tures in the imagery that are highly distinctive. In
so far as features are distinctive, the chances of a
false match are minimized.

Multiple cameras: By using N calibrated cameras,
one can obtain better depth estimates. The corre-
lation surfaces for (N — 1) matches can be merged
at each point, and the best “global” match can be
selected. To merge the results, the raw dispari-
ties are converted into a common representation.
Moravec implemented a system of this type by slid-
ing a camera to nine different positions along a bar
[10]. Kanade et al. have developed a technique of
this type, using an inverse disparity representation
to integrate multiple results [8]. They have applied

their technique to camera configurations with three
or more cameras in a line. Kanade is currently de-
veloping another version of this type of system using
seven cameras arranged in an L-shaped configura-
tion.

Match evaluation: Perform matching everywhere in
the image, but attempt to winnow out bad esti-
mates.

In many real situations, it is prohibitive, or impossible
to tightly constrain the environment and sensing system.
If there are few distinctive features in a scene, selective
matching will not provide sufficient detail for detecting
small scene elements. In addition, if the environment is
constrained, matching is selective and multiple cameras
are used, erroneous matches arise. Therefore, we pursue
the match evaluation tack of performing stereo match-
ing everywhere on relatively uncalibrated imagery and
attempting to evaluate the matches in order to cull out
erroneous estimates.

A number of techniques have been used to evaluate
stereo matches, some with more success than others.
Probably the first technique to be tried was simply a
threshold on the correlation value computed for the best
match. Unfortunately, although this value 1s related to
the validity of a match, the range of values associated
with correct matches significantly overlaps the range of
values for incorrect matches. This means that for any
reasonable threshold there is a large number of correct
matches labelled as “bad” and incorrect matches labelled
as “good.” This situation occurs because the correlation
value 1s a function of several interrelated factors, such
as the change in perspective from one viewpoint to an-
other, the reflectance properties of the scene feature, the
amount of noise in the images, the overall change in in-
tensities from one image to another, and the number of
nearby features that have a similar appearance.

Given this complex interrelationship of factors, many
approaches to evaluating stereo matches have been tried:

Factor Amnalysis: Develop computational models of as
many of the factors as possible, implement a match-
ing technique that estimates the parameters of these
models, and then set thresholds on these parameter
values. For example, Baltsavias has implemented
an iterative matching technique that can estimate
such things as the surface normal of a scene feature
and the gain and offset between two image windows

9.

Correlation Surface Analysis: Examine the correla-
tion surface near the best match and compute prop-
erties such as the height of the highest peak relative
to the “background” or the number of alternative
matches (i.e., significant peaks) within a certain dis-
tance of the highest peak. For example, Nishihara
has implemented an evaluation procedure that only



Figure 3: Global map formation from a sequence of stereo pairs.



accepts a match if its peak is significantly higher
than the second best one and the width of the peak
is greater than some threshold [3].

Object Surface Constraints: Invoke constraints de-
rived from assumptions about the types of surfaces
in the scene. For example, Pollard et al apply a
threshold of 1 pixel on the disparity gradient be-
tween two measured points [12]. As another exam-
ple, Hannah has implemented an outlier rejection
process that examines a large region around each
result and marks points as inconsistent when they
are more than 3 or 4 standard deviations away from

the mean of the disparities in the region [3].

Multiple In(ter)dependent Matches:

Perform multiple matches for each feature and com-
pare the positions of their results. If the positions
do not agree, mark the results as inconsistent. For
example, Ayache and Lustman have implemented a
trinocular stereo system in which two matches are
made for each point, one from imagel to image2 and
one from image? to image3. Then, as shown in Fig-
ure 4, if the point in image3 is close enough to the
epipolar line corresponding to the point in imagel,
mark the points as consistent [1].

Existing stereo systems have typically used combinations
of these techniques to winnow out mistakes. In this pa-
per we focus on the multiple-match approach and ex-
tend 1t to include temporal consistency for multi-camera
sensors. Omne reason we concentrate on multiple-match
techniques is that it is easy to set a threshold for “good”
matches. We use a threshold of one pixel for all tests.
For some of the other tests, such as correlation surface
analysis and outlier rejection, it is difficult to find a prin-
cipled way of setting the thresholds.

Several multiple-match techniques are possible and
many of them have been incorporated into existing stereo
systems to filter out mistakes. Some examples are:

Left-right Check: Perform each match twice, once
from the left image to the right and once from the
right image to the left (see Figure 5); if the distance
between the initial point in the left image and the
final right-to-left match is small enough, mark the
point as consistent (e.g., see [7] or [6]).

Compare Different Techniques: Apply two or
more matching techniques and compare the posi-
tions of their results. For example, different search
strategies and/or different correlation metrics could
be used. As far as we know, no one has imple-
mented this approach. Several stereo systems use
different sized windows within a hierarchical search
strategy, where one match guides the search for a
higher-resolution one, but nobody has applied two

completely different techniques (e.g., a correlation-
based technique and an edge-based technique) and
then merged their results.

Compare Multiple Depth Estimates: Given

N calibrated cameras (where N is 3 or more), (1)
select one camera as the pivot camera, (2) for each
point in the pivot camera’s image, compute (N —1)
depth estimates by analyzing pairs of images, one of
which is from the pivot camera, (3) mark points as
consistent if the depth estimates are approximately
equal. Yoshida and Hirose have implemented a five-
camera sensor based on this approach [16].

Epipolar-line Check: Given three calibrated cam-
eras, there 18 a way to use two matches for each
point to check the results, as shown in Figure 4:
Match points from imagel in image2 and points
from image2 in image3; If the distance between im-
aged’s point and the epipolar line corresponding to
imagel’s point is sufficiently small, mark the point
as consistent [1].

Transitivity Check: Given three uncalibrated cam-
eras (or three crudely calibrated cameras), another
way to identify possible mistakes is to perform three
matches for each point, one from imagel to image2,
one from image2 to image3, and one from image3 to
imagel (see Figure 6). If the distance from the start-
ing point in imagel to the final point produced by
traversing the loop is small enough, mark the point
as consistent. This requires more matches than the
epipolar-line check, but it can be applied without
knowing a precise calibration.

Vehicle-Relative Motion Check: Given stereo im-
ages taken over time from a vehicle making a known
motion (or a motion that can be computed), candi-
date matches can be evaluated by (1) computing a
vehicle-relative x-y-z location from one image pair,
(2) tracking the point into a second image pair, (3)
computing another location for the point, adding in
the known motion, and finally (4) checking to see if
the two estimates are approximately equal. If not,
the point is either a mistake or on a moving object.

Object-Relative Motion Check: If the motion of
the vehicle is not known (and cannot be easily com-
puted), then pairs of images taken at different times
can be used to filter out mistakes by (1) tracking
points over time, (2) selecting a point in the scene
as a reference point, (3) computing the x-y-z loca-
tions of all points relative to the reference point, and
(4) marking points with stable relative distances as
consistent. Moezzi et al have implemented a system
based on this approach [9].

two cameras that ar



Figure 5: Left-right consistency check.



Figure 6: Trinocular consistency check for uncalibrated cameras.

We are experimenting with a version of the transitivity
check that compares stereo matches over time (see Fig-
ure 7). In keeping with our goal of minimizing smooth-
ing, we work directly with the raw intensities at full field
resolution and use small correlation windows to perform
both the stereo matching from left to right and the optic-
flow matching over time. If the two disparity maps D,
and D,,_; and the two flow fields M; and M, are viewed
as maps from pixels to pixels, then for each pixel P, the
spatiotemporal transitivity check measures the distance
between M, (D, (P)) and Dy,_1(M;(P)). If the distance
between these two points is within one pixel, P is marked
as consistent.

We are still exploring ways of characterizing the effec-
tiveness of this type of filter. As discussed in the next
section, we have found that the loop test catches a signif-
icant number of mistakes not detected by the left-right
check for example.

However, some erroneous matches pass both tests. To
catch these mistakes, we are developing a version of the
vehicle-relative motion check that uses an estimate of
the vehicle’s motion and a history of a feature’s mea-
sured distances to detect mistakes. For example, con-
sider the two scene features 4 and B in Figure 8a which
are viewed by two one-dimensional cameras. The point
A projects into al in the left image and aR in the right
image. If the matching system erroneously identifies bR
as the match for al (as shown in Figure 8a), the system
produces a fictitious scene point, shown as the hollow
point in the upper right corner of the diagram. If the
pair of cameras is moved forward (i.e., from left to right)
and the matching system persists in matching B to A,
as shown in Figure 8b, then the fictitious point appears
to move a distance d in the world. If d is significantly

larger than the change potentially caused by inaccurate
disparity measurements, then the al.-to-bR match is ei-
ther a mistake or the corresponding point is moving in
the scene.

In the next section we describe our experimental sys-
tem, which was designed to explore these tests and their
interactions.

The MIME System

Our purpose in implementing the MIME system was
to explore the 1dea of maximizing the resolution of range
data produced by a passive sensor. Qur approach has
been to minimize the use of explicit or implicit spatial
aggregation operations and to recover the beneficial fil-
tering effects of spatial aggregation by using a set of tests
that compare the results of multiple matches.

The MIME system is implemented on a Connection
Machine. Since it is a research system it is not opti-
mized for speed, rather it is designed to facilitate the
comparison of different matching and filtering strategies.
As such, it has 20 or 30 top-level switches and parame-
ters for specifying a particular processing configuration.
The switches include a switch to apply left-right check-
ing or not, a switch to apply the spatiotemporal check,
and a switch to fill in missing data by using the results
of a pixel’s neighbors to predict a narrow search region.
The parameters include the number of y disparities to
search for each match (typically between 1 and 3 lines
away from the epipolar line), the sizes of the correlation
windows, and the sizes of the search regions for motion
analysis. (In the next section we briefly describe an im-
plementation of a real-time stereo system that was care-
fully engineered to run efficiently on SRI’s indoor robot,



Figure 8: (a) al-to-bR matching mistake and the deduced scene point. (b) Implied motion of the deduced scene
point caused by a reoccurrence of the mistake.



Flakey.)

Assumptions and Experimental Con-

straints

Our experimental data was obtained by mounting a
pair of black-and-white cameras on a HMMWYV vehicle,
aligning them manually so their optical axes were ap-
proximately parallel, recording the data on VHS video-
tape as the vehicle was driven on and off road, and fi-
nally digitizing sequences of video fields from the tapes.
As a result, the epipolar geometry was not known pre-
cisely, partly because the relative position of the cam-
eras was not known precisely and partly because there
was no attempt to compute lens distortions and the like.
Therefore, our matching technique could not rely on pre-
cise epipolar geometry, and yet it could constrain the
searches to a small number of lines relative to the pre-
dicted epipolar line. In general, we and others have
found 1t difficult to maintain precise calibrations as the
vehicle bounces along over rocks and ditches, making it
desirable to have a system that is capable of working
with less constrained imagery.

The overall image intensities vary from one image to
the next for several reasons. First, some of the data
was gathered with auto-iris lenses, which are designed
to cover a wide dynamic range of lighting conditions
by automatically adjusting the apertures of the lenses.
These lenses work well, except that they are not linked
together, so one might be opening while the other one is
closing. In addition, their control systems tend to “hunt”
for the best settings, causing the intensities to fluctuate
continuously. A second reason for intensity differences 1s
that there is no way to completely turn off the automatic
gain control (AGC) on our COHU cameras, even though
there is a switch on the cameras that says “off.” A third
reason is that our method of synchronizing the two cam-
eras involves using the video from one camera to drive
the second one. This works well, except that it tends to
drop the intensity of the initial camera a little because
its output is doubly terminated. And finally, the lenses
occasionally got dirty, making some parts of an image
darker than others.

The bottom line is that we could not rely on the ab-
solute intensity levels, forcing us to use a normalized
correlation metric. The normalized metric does a good
job of factoring out the gain and offset between the two
correlation windows, however, it introduces mistakes be-
cause it eliminates the ability to discriminate between
possible matches on the basis of absolute intensities. In
other words, if the intensity transforms were better con-
strained, a tighter requirement could be placed on po-
tential matches, which would reduce the chances of in-
correct matches. This line of reasoning is identical to the
argument for using as much geometric information (e.g.,
epipolar constraints and a limited range of acceptable

object distances) as possible to limit the search areas
for matches. There are two benefits. First, the smaller
the search area, the faster the system can find the best
match. And second, the smaller the search area, the
higher the probability is of finding the correct match.
Similarly in the intensity domain. The better the image-
to-image intensities are known, the faster the matches
can be computed and the more likely the correct match
will be found.

One last point about our data acquisition, we did not
have instruments to measure and record the dynamic
motion of the vehicle as the data was obtained. We only
knew the approximate speed of the vehicle. As a result,
we are not able to analytically align results computed at
different times.

System Description

The system 1s based on three multiple-match filters:
the left-right check, the 4-way spatiotemporal check, and
the forward motion version of the vehicle-relative check.
The last filter has been implemented, but not thoroughly
tested.

Given a new image pair, the “complete” system per-
forms the following sequence of operations:

1. For each pixel in the left image, locate the best
match in the right image (within the search region,
which is typically 85 pixels wide by 3 or 7 pixels
high for our camera configuration).

2. For each pixel in the right image, locate the best
match in the left image, using the same size search
areas as in step 1.

3. Mode filter the y disparities computed for the pixels
with matches.

4. Select the left-to-right matches and right-to-left
matches, corresponding to the y disparity produced
in step 3.

5. Perform the left-right check, marking pixels in the
left image as invalid if their left-to-right and right-
to-left matches are not inverses of each other (to
within one pixel).

6. For each pixel in the left image, locate the best
match in the previous image from the left camera
and mode filter.

7. For each pixel in the previous left image, locate the
best match in the current left image and mode filter.

8. Perform a left-right-type check on the results of
steps 6 and 7.

9. Perform steps 6 through 8 on the two most recent
right images.



10. Perform the 4-way spatiotemporal check, marking
pixels as invalid if the sequence of matches around

the loop does not agree (to within one pixel).

11. For each valid pixel in the left image, perform the
vehicle-relative check, marking pixels invalid if their
motion differs significantly from their expected mo-

tion.

12. For each invalid pixel, use the average of the dispar-
ities of its neighbors as the center of a small search

window within which to look for a possible match.

13. Map the previous statistics into the current left im-
age (or all the images) by applying the motion vec-

tors computed in steps 6 through 9.

14. Update the statistical arrays that have one entry
per pixel and keep track of such things as the num-
ber of times the pixel feature has been completely

conslstent 1n a row.

The first 3 steps provide a way of reducing the height
of the search regions to a single line. We introduced
the option to perform mode filtering in this refinement
process, even though it is a type of smoothing, for two
First, we expect the y disparities to change
slowly in an image. And second, the smoothing is not
directly being applied to the raw image or the results,
rather it is being used to compute an intermediate result
that is used to locate the final matches. As mentioned
earlier, if the epipolar constraints are known precisely,
these steps would not be necessary.

Figure 9 shows an example of the type of sequence pro-
cessed by the MIME system. The images have a rect-
angular aspect ratio because they are individual fields
digitized from a videotape. They are a sequence of even
fields, which are taken 1/30th of a second apart. Fig-
ure 10 shows the disparities computed and filtered from
4 image pairs. In this figure, lighter points are closer
to the sensor. To emphasize the heights of objects, we
transform these raw disparities into ones relative to a
horizontal plane, as shown in Figure 11.

The computation of optical flow is performed using
SSD correlation followed by a mode filtering step. The
use of SSD correlation is justified since the images are
taken from the same camera one thirtieth of a second
apart, and absolute intensity levels are not expected to
change drastically between frames. Mode filtering makes
sense in that the flow field resulting from forward motion
is expected to change slowly in an image. Figure 12
shows the unfiltered y disparities computed for one of
the pairs of images in Figure 9. Figure 13 shows the
mode-filtered version of these disparities, which are used
to select the row for the best match.

We have introduced a slightly different left-right check
than used by previous researchers. The first versions of
this filter required that the left-to-right and right-to-left

reasomns.

10

matches to be exact inverses (i.e., to the pixel). However,
because of quantization effects, the commonly used ver-
sion of the test allows the inverse to be within one pixel
of the starting pixel, as shown in Figure 14. Our version
loosens that constraint a bit more by taking into account
the possibility that the right-to-left match may land on
pixel that doesn’t have a valid right-to-left match. It
accepts a pixel in the left image if the matching pixel in
the right image or one of its two neighbors maps back
to within one pixel of the initial point (see Figure 15).
This change makes the test more symmetric. It also
accepts a few more pixels in the left image as valid. Fig-
ure 16 shows the results after the left-right test has been
applied. Figure 17 shows the results after both the left-
right and spatiotemporal loop tests have been applied.

Figure 18 illustrates a situation in which the left-right
test fails to filter out a mistake. Two events conspire
to produce this erroneous result. In Figure 18, al. is
matched to bR, instead of aR,, because something has al-
tered A’s appearance in the right image (e.g., A may be
partially occluded). Similarly, bR is incorrectly matched
to al. because B’s appearance in the left image is differ-
ent. As a result of these two mistakes, the left-right test
erroneously accepts the al.-to-bR match.

Figure 19 and Figure 20 show an example of this type
of mistake. Figure 19 shows the context of the mistake.
It occurs on the front edge of a deep rut. Figure 20 is a
blow-up of the images around the mistake. The correla-
tion window on the right in the left image is mistakenly
matched to the left window in the right image, instead of
the right one. The happens because the window strad-
dles an occlusion edge between two regions at different
depths, the front edge of the rut and the back of the rut.
In the right image, these two subwindows have different
disparities, so that there is no coherent window match-
ing the one in the left image. As a result, the matching
system finds a completely new window in the right image
that looks like the one in the left. This new window is
also along the edge of the rut, causing the same problem
for the matching procedure when it tries to match from
right to left. Unfortunately, but not too surprisingly,
this right-to-left match happens to find the original win-
dow in the left image as its best match (instead of the
left window in the left image). As a result, the mistake
passes the left-right test.

Figure 21 shows another example of how a mistake
can pass the left-right test. The X on the left of the left
image is not in the field of the view of the right camera.
Therefore, the best match for 1t is the only visible X in
the right image. If the search from right to left happens
to prefer the left X, as indicated in the diagram, then
this pair of mistakes leads to a mismatch that is not
caught by the left-right check. Again, it took two events
to produce the problem.

Figure 22 shows an example of how a mistake that
1s missed by the left-right check can also be missed by



Figure 9: Sequence of stereo pairs of a Martian-type scene.

Figure 10: Temporally filtered stereo disparities for a pair of images from Figure 9.
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Figure 11: A skewed version of the disparities shown in Figure 10.

Figure 12: Unfiltered y disparities.

Figure 13: Mode filtered y disparities.
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Figure 15: New left-right consistency check.

Figure 16: Disparity results after the left-right check has been applied.
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Figure 18: A pair of mistakes that conspire to pass the left-right check.

Figure 19: A pixel feature that erroneously passes the left-right check.

Figure 20: A blown-up version of the mistake shown in Figure 19.
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Figure 21: A pair of mistakes, one of which is caused by a feature being out of the field of view of the other image.

the spatiotemporal check. This example 1s similar to the
example in Figure 18. If the cause of the mistakes in
first pair of images (e.g., partial occlusions) persists over
time, the spatiotemporal test may also miss the mistake.
However, if the relative positions of the cameras and
scene features change significantly, the test is likely to
pick up the inconsistency and mark the results as invalid.

We added the option to use the results of the neigh-
bors of an invalid point to give it a second chance to find
a compatible match. Given an estimate of its disparity,
the system searches a small region about that estimate
for the best match. If that match passes all the filters, it
is marked as valid and included in the reported results.
In our images, this process fills in 15 to 20% of the pix-
els initially marked as inconsistent by the left-right or
spatiotemporal tests.

An open question about this process i1s the selection
of the size of the search region about a suggested dispar-
ity. If the region is as large as the region used in step 1,
the system will probably return the same matches that
failed the test in step 5. At the other extreme, if the
region 1s reduced to a single pixel, the system would re-
port that pixel as the match and it would automatically
pass all tests because, by definition, it is the best match
in the region. So the question is how to reduce the size
of the search region in a principled way so that it limits
the search to an appropriate sized region without inval-
idating the evaluation procedures. We arbitrarily used
regions that were 10 pixels wide in our experiments.

Experimental Results

In order to characterize the effectiveness of the various
tests within

the MIME system, we have applied it to several dif-
ferent image sequences with several different parameter
and switch settings. Figure 23 shows a typical set of
statistics produced by the system when both the left-
right and spatiotemporal tests are applied. For this par-
ticular sequence, the vehicle was turning to the left as
it approached a deep rut in a relatively flat field (see
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Figure 24). Figure 25 shows the region of the image in
which we gathered statistics. The rest of the image is
out of the field of view of the right image. The left-right
test marks an average of 12.1% of the pixels in the left
image as inconsistent.

The motion tracking procedure is virtually perfect and
the up-down version of the left-right check has no trouble
verifying the flow vectors. The up-down check marks
fewer than 3 pixels in every 1000 as inconsistent.

The spatiotemporal check marks an additional 4.3%
of the points as possible errors, reducing the average
number of “consistent” points in the left image to be
83.56%. When these tests are convolved together over 4
image pairs, the number of completely compatible points
is 70.0%. When the suggestion procedure is used to fill
in missing data, this number increase a few percentage
points to about 74.3%. The number of gross errors pass-
ing all the tests is on the order of 10 to 20 pixels per
image.

Flakey’s Stereo system

For several years, Flakey, SRI’s indoor robot, has used
ultrasonic sensors and a structured-light sensor to locate
potential obstacles in its path. These sensors, however,
have several limitations. For example, sonar cannot de-
tect thin objects, such as table legs. And the structured-
light sensor can only measures distances to points that
are in a particular plane and are close to the sensor.
Therefore, in order to increase both Flakey’s sensing
resolution and sensing range, we have implemented a
streamlined version of the MIME stereo system on the
on-board SparclO processor. The resulting system pro-
duces a 105-by-240 range image in .4sec. In addition,
Flakey’s control system can select horizontal stripes from
this image to be recomputed at a higher rate. For ex-
ample, it can compute 20 rows of the range image at
30hertz.

Flakey uses a dual lens system to project a pair of
images into a single video field. We originally installed



Figure 22: A mistake that passes the spatiotemporal test due to recurring errors.

Image || Left-right | Forward-back Loop Completely Completely
Pair Consistent Consistent Consistent | Consistent for | Consistent w/
last four pairs prediction

1 90.27 - -

2 88.83 100.00 82.36

3 87.57 99.96 80.25

4 88.11 99.97 77.39 70.04 70.04

5 89.55 99.98 77.54 66.32 66.71

6 89.83 100.00 84.43 66.68 67.55

7 88.33 99.99 82.62 67.41 69.13

8 89.92 100.00 82.05 69.82 72.30

9 89.32 100.00 85.22 75.13 78.91
10 87.19 100.00 77.76 70.03 74.94
11 86.41 99.89 7777 66.88 72.83
12 86.43 100.00 75.37 65.16 71.28
13 87.37 99.98 75.87 62.91 68.70
14 86.81 100.00 82.82 64.72 70.74
15 86.72 99.82 78.55 64.00 69.93
16 86.32 100.00 82.29 67.52 72.82
17 86.45 100.00 77.49 70.51 T74.77
18 84.76 100.00 76.89 67.15 72.84
19 85.37 100.00 78.67 67.80 74.15

Figure 23: Table of consistent pixels over time.
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Figure 24: A scene

Figure 25: Region from the left image in Figure 24 from which the statistics in Figure 23 were computed.

the optical 2-to-1 lens with the hope that it would mini-
mize the overall change in intensities from one image to
the next. However, the lens has such strong vignetting
problems that both half images are significantly darker
at the edges than they are at the middle. We tried two
separate cameras, but our inability to turn off their au-
tomatic gain control has made them difficult use, espe-
cially in buildings with a number of specular fixtures and
bright lights.

In order to run the stereo matching algorithm as fast
as possible, we did the following:

e Subsampled the images from left to right, reducing
315 columns down to 105. This reduced the range
of disparities from about 50 to 16, which can be
computed efficiently in the Sparcl0’s registers.

e Simplified the correlation metric to be the sum of
squared differences, which can be computed signifi-
cantly faster than normalized cross correlation. We
computed the sums incrementally by sliding the cor-
relation window over the search region.

e Deleted the spatiotemporal consistency test, but
kept the left-right check to validate matches. There-
fore, each match is performed twice. In addition, we
added an interest-type operator to flag points in the
left 1mage that are unlikely to produce reliable re-
sults, because they lack texture.

Flakey merges the stereo data with its sonar data,
and then plans its paths in the same way it always has.
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It uses a two-dimensional, robot-centered map to keep
track of potential obstacles and landmarks.

In the future, we plan to add behaviors to Flakey so
that it can plan data-gathering maneuvers to examine
unmeasured regions or closely inspect points of special
interest.

Conclusion and Future Work

In this paper we have (1) introduced a spatiotempo-
ral consistency check for evaluating stereo results and
(2) incorporated it into a system for integrating range
data over time. We are in the process of characterizing
the utility of this approach and its relationship to other
similar techniques.

One observation we’ve made is that outdoor natural
scenes contain sufficient texture to support dense correla-
tion matching. For example, our matching technique lo-
cates matches for 70 to 80% of the pixels in most images,
even though we use relatively small correlation windows.
The 20 to 30% mistakes and no-data regions are caused
by such things as bland areas, repeated patterns, and
occlusions. Even though the mistakes represent a rel-
atively small fraction of the results, most tasks require
significantly more complete and more reliable data. For
example, a navigation system cannot recommend driv-
ing over areas containing a unmeasured regions or un-
explained points floating above the ground. Therefore,
there is a need for evaluation techniques to assign con-



fidences to individual pixel features and for higher-level
sensor control strategies to reexamine no-data or ques-
tionable regions.

The multiple-match consistency checking procedures
discussed in this paper provide a form of “structural fil-
tering” that we prefer over such techniques as thresh-
olding correlation values because they are based on dis-
tance measurements for which 1t is relatively easy to de-
termine appropriate thresholds—and there are always
thresholds! We view the spatiotemporal filtering tech-
nique that we discussed to be one of several techniques
from which a stereo system can be constructed. One
benefit of it is that it provides a natural way to inte-
grate range information over time, which opens up the
possibility of additional temporal analysis of stereo re-
sults.

In the future we plan to complete the characteriza-
tion of this approach, explore higher-level explanations
of the pixels marked invalid by the consistency checks
(e.g., produce explanations in terms of occlusions and
bland areas), and investigate techniques for combining
the results of multiple “binary” consistency checks to
form scenes models capable of answering such questions
as “What are navigable areas in front of the vehicle?”
and “Where are there preliminary indications of a pos-
sible obstacle that should be examined more closely?”
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