
Spatiotemporal Consistency Checking Of Passive Range DataRobert C. Bolles, SRI International, bolles@ai.sri.comJohn Wood�ll, Interval Research, wood�ll@interval.comNovember 11, 1993AbstractA spatiotemporal technique for checking the consis-tency of stereo range results and integrating them overtime is presented. This technique is designed as part ofa passive ranging system whose goal is to produce rangeimages with as high a resolution as possible in order tosupport the detection of as small objects as possible. Thebasic approach is to minimize the application of spatialaggregation operations, which reduce resolution, and toapply a set of multiple-match consistency checks overspace and time to �lter out mistakes. We present thebasic approach, describe two implementations of it (oneof which is a research-oriented system that runs on aConnection Machine and the other of which runs on aSparc10 and provides real-time feedback for SRI's indoorrobot, Flakey), present an initial characterization of thee�ectiveness of the technique, and conclude with ideasfor future work.IntroductionThe ultimate goal of this research is to develop pas-sive range sensing techniques that provide the spatialand depth resolutions required to detect small, but dan-gerous, navigation obstacles, such as holes and medium-sized rocks. Current feature-based techniques do notprovide dense enough results to detect these objects andcorrelation-based stereo and motion systems typicallysmooth over them. Correlation systems apply spatialaggregation operations in three places, in image prepro-cessing (e.g., performing Gaussian smoothing to reduceimage noise), in matching (e.g., using large correlationwindows to provide an ample statistical footing), andin post processing (e.g., eliminating results that di�ersigni�cantly from their neighbors). These operations re-duce the chance of errors, but they also dramaticallyreduce the resolution of the results. Our approach, onthe other hand, is to minimize the use of spatial aggrega-tion in order to maximize the resolution and to providean alternate set of �ltering techniques to eliminate mis-takes.We propose a class of �ltering strategies based onchecking the consistences of multiple in(ter)dependent

matches. The idea behind this class of strategies is thesame as that behind the consistency checking techniquesused in Moravec's \slider stereo" [10], Hannah's left-to-right and right-to-left doublechecking [7], INRIA'strinocular �ltering [1], and Kanade's multi-image sum-ming of SSD's [16]. In this paper we introduce a naturalextension of these techniques to include spatiotemporalconsistency checking. Figure 1 shows the basic approach.Each arrow represents an independent match from oneimage to another. The system performs conventionalstereo disparity estimation from left to right and optical
ow estimation from present to past. The disparity esti-mates are corroborated by performing an addtional rightto left stereo match and verifying that the left to rightresult is the inverse of the right to left (the \left-rightcheck"), as in [7] and [6]. The optical 
ow estimates aresimilarly corroborated by estimating the past to present
ow �eld (the \forward-back check"). If these checks failthe matches are marked as invalid. In addition, since anoptical 
ow estimate is available for each pixel in bothcameras, the spatiotemporal transitivity of two stereoestimates and two optical 
ow estimates can be checkedto insure that the four sided \loop" of matches is con-sistent (the \loop check"). If the loop check fails, thecon�dence in the individual matches is decreased. Va-lidity information is associated with what we term \pixelfeatures," instead of \pixels" or \features," since the in-formation is associated with a grid of pixels, but remainsin correspondence with moving scene features.This spatiotemporal matching strategy provides a nat-ural way of integrating local depth images over time.As shown in Figure 2, the model of the scene is image-centered. Each pixel-feature has assocated stereo dispar-ity estimates, optical 
ow estimates and auxiliary infor-mation describing the numbers and types of consistencychecks passed by the pixels. An advantage of this typeof scene modeling is that it avoids the need to explicitlycompute the 6 degree-of-freedom transforms that relateone local 3D model to another, as shown in Figure 3.Computing these transforms can be tricky when, for ex-ample, there is motion in a scene, and computationallyexpensive (e.g., see [13]). Our approach to integrationdi�ers from most other approaches, however, in that itdoes not provide a persistent global model of the scene.Rather it provides an image-centered model of the cur-1
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Figure 1: Spatiotemporal multiple-match consistency checking.
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rently visible surfaces of the scene objects. As objectsleave the �eld of view, they are lost. The informationproduced by this type of modeling system could be pro-vided as data to a more conventional global modelingsystem.The remainder of this paper is organized as follows.In Section 2 we describe several techniques for attainingcredible stereo disparity estimates and discuss how theyrelate to our consistency-checking approach. In Section3, we describe an experimental system that makes use ofspatiotemporal consistency checking, and present exam-ples of its use within a sensor system to support cross-country navigation. In Section 4, we brie
y describea second implementation of these ideas in a real-timesystem for SRI's indoor robot, Flakey. And �nally, inSection 5, we draw some conclusions and discuss ideasfor improvements and future work.Attaining Credible Stereo Esti-matesProducing stereo disparity estimates is simple | foreach pixel on one image, �nd the best match under somemetric on the other image. Attaining credible disparityestimates is a complex problem, to which there are manyapproaches.System Engineering: Constrain the environmentand/or the sensing system to eliminate or minimizethe impact of as many factors as possible. For exam-ple, restrict the lighting to be from a well-modeledsource. This approach also includes techniques toreduce the search region by calibrating the cam-eras relative to one another. Smaller, more focusedsearch regions reduce the computation required to�nd a match, and more importantly, reduce thechance that the search might accidently locate animage feature that happens to look more like thedesired feature than the real one.Selective matching: Only attempt matches for fea-tures in the imagery that are highly distinctive. Inso far as features are distinctive, the chances of afalse match are minimized.Multiple cameras: By using N calibrated cameras,one can obtain better depth estimates. The corre-lation surfaces for (N � 1) matches can be mergedat each point, and the best \global" match can beselected. To merge the results, the raw dispari-ties are converted into a common representation.Moravec implemented a system of this type by slid-ing a camera to nine di�erent positions along a bar[10]. Kanade et al. have developed a technique ofthis type, using an inverse disparity representationto integrate multiple results [8]. They have applied

their technique to camera con�gurations with threeor more cameras in a line. Kanade is currently de-veloping another version of this type of system usingseven cameras arranged in an L-shaped con�gura-tion.Match evaluation: Perform matching everywhere inthe image, but attempt to winnow out bad esti-mates.In many real situations, it is prohibitive, or impossibleto tightly constrain the environment and sensing system.If there are few distinctive features in a scene, selectivematching will not provide su�cient detail for detectingsmall scene elements. In addition, if the environment isconstrained, matching is selective and multiple camerasare used, erroneous matches arise. Therefore, we pursuethe match evaluation tack of performing stereo match-ing everywhere on relatively uncalibrated imagery andattempting to evaluate the matches in order to cull outerroneous estimates.A number of techniques have been used to evaluatestereo matches, some with more success than others.Probably the �rst technique to be tried was simply athreshold on the correlation value computed for the bestmatch. Unfortunately, although this value is related tothe validity of a match, the range of values associatedwith correct matches signi�cantly overlaps the range ofvalues for incorrect matches. This means that for anyreasonable threshold there is a large number of correctmatches labelled as \bad" and incorrect matches labelledas \good." This situation occurs because the correlationvalue is a function of several interrelated factors, suchas the change in perspective from one viewpoint to an-other, the re
ectance properties of the scene feature, theamount of noise in the images, the overall change in in-tensities from one image to another, and the number ofnearby features that have a similar appearance.Given this complex interrelationship of factors, manyapproaches to evaluating stereo matches have been tried:Factor Analysis: Develop computational models of asmany of the factors as possible, implement a match-ing technique that estimates the parameters of thesemodels, and then set thresholds on these parametervalues. For example, Baltsavias has implementedan iterative matching technique that can estimatesuch things as the surface normal of a scene featureand the gain and o�set between two image windows[2].Correlation Surface Analysis: Examine the correla-tion surface near the best match and compute prop-erties such as the height of the highest peak relativeto the \background" or the number of alternativematches (i.e., signi�cant peaks) within a certain dis-tance of the highest peak. For example, Nishiharahas implemented an evaluation procedure that only3
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accepts a match if its peak is signi�cantly higherthan the second best one and the width of the peakis greater than some threshold [3].Object Surface Constraints: Invoke constraints de-rived from assumptions about the types of surfacesin the scene. For example, Pollard et al apply athreshold of 1 pixel on the disparity gradient be-tween two measured points [12]. As another exam-ple, Hannah has implemented an outlier rejectionprocess that examines a large region around eachresult and marks points as inconsistent when theyare more than 3 or 4 standard deviations away fromthe mean of the disparities in the region [3].Multiple In(ter)dependent Matches:Perform multiple matches for each feature and com-pare the positions of their results. If the positionsdo not agree, mark the results as inconsistent. Forexample, Ayache and Lustman have implemented atrinocular stereo system in which two matches aremade for each point, one from image1 to image2 andone from image2 to image3. Then, as shown in Fig-ure 4, if the point in image3 is close enough to theepipolar line corresponding to the point in image1,mark the points as consistent [1].Existing stereo systems have typically used combinationsof these techniques to winnow out mistakes. In this pa-per we focus on the multiple-match approach and ex-tend it to include temporal consistency for multi-camerasensors. One reason we concentrate on multiple-matchtechniques is that it is easy to set a threshold for \good"matches. We use a threshold of one pixel for all tests.For some of the other tests, such as correlation surfaceanalysis and outlier rejection, it is di�cult to �nd a prin-cipled way of setting the thresholds.Several multiple-match techniques are possible andmany of them have been incorporated into existing stereosystems to �lter out mistakes. Some examples are:Left-right Check: Perform each match twice, oncefrom the left image to the right and once from theright image to the left (see Figure 5); if the distancebetween the initial point in the left image and the�nal right-to-left match is small enough, mark thepoint as consistent (e.g., see [7] or [6]).Compare Di�erent Techniques: Apply two ormore matching techniques and compare the posi-tions of their results. For example, di�erent searchstrategies and/or di�erent correlation metrics couldbe used. As far as we know, no one has imple-mented this approach. Several stereo systems usedi�erent sized windows within a hierarchical searchstrategy, where one match guides the search for ahigher-resolution one, but nobody has applied two

completely di�erent techniques (e.g., a correlation-based technique and an edge-based technique) andthen merged their results.Compare Multiple Depth Estimates: GivenN calibrated cameras (where N is 3 or more), (1)select one camera as the pivot camera, (2) for eachpoint in the pivot camera's image, compute (N �1)depth estimates by analyzing pairs of images, one ofwhich is from the pivot camera, (3) mark points asconsistent if the depth estimates are approximatelyequal. Yoshida and Hirose have implemented a �ve-camera sensor based on this approach [16].Epipolar-line Check: Given three calibrated cam-eras, there is a way to use two matches for eachpoint to check the results, as shown in Figure 4:Match points from image1 in image2 and pointsfrom image2 in image3; If the distance between im-age3's point and the epipolar line corresponding toimage1's point is su�ciently small, mark the pointas consistent [1].Transitivity Check: Given three uncalibrated cam-eras (or three crudely calibrated cameras), anotherway to identify possible mistakes is to perform threematches for each point, one from image1 to image2,one from image2 to image3, and one from image3 toimage1 (see Figure 6). If the distance from the start-ing point in image1 to the �nal point produced bytraversing the loop is small enough, mark the pointas consistent. This requires more matches than theepipolar-line check, but it can be applied withoutknowing a precise calibration.Vehicle-Relative Motion Check: Given stereo im-ages taken over time from a vehicle making a knownmotion (or a motion that can be computed), candi-date matches can be evaluated by (1) computing avehicle-relative x-y-z location from one image pair,(2) tracking the point into a second image pair, (3)computing another location for the point, adding inthe known motion, and �nally (4) checking to see ifthe two estimates are approximately equal. If not,the point is either a mistake or on a moving object.Object-Relative Motion Check: If the motion ofthe vehicle is not known (and cannot be easily com-puted), then pairs of images taken at di�erent timescan be used to �lter out mistakes by (1) trackingpoints over time, (2) selecting a point in the sceneas a reference point, (3) computing the x-y-z loca-tions of all points relative to the reference point, and(4) marking points with stable relative distances asconsistent. Moezzi et al have implemented a systembased on this approach [9].two cameras that ar5
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Figure 6: Trinocular consistency check for uncalibrated cameras.We are experimenting with a version of the transitivitycheck that compares stereo matches over time (see Fig-ure 7). In keeping with our goal of minimizing smooth-ing, we work directly with the raw intensities at full �eldresolution and use small correlation windows to performboth the stereo matching from left to right and the optic-
ow matching over time. If the two disparity maps Dnand Dn�1 and the two 
ow �elds Ml andMr are viewedas maps from pixels to pixels, then for each pixel P , thespatiotemporal transitivity check measures the distancebetween Mr(Dn(P )) and Dn�1(Ml(P )). If the distancebetween these two points is within one pixel, P is markedas consistent.We are still exploring ways of characterizing the e�ec-tiveness of this type of �lter. As discussed in the nextsection, we have found that the loop test catches a signif-icant number of mistakes not detected by the left-rightcheck for example.However, some erroneous matches pass both tests. Tocatch these mistakes, we are developing a version of thevehicle-relative motion check that uses an estimate ofthe vehicle's motion and a history of a feature's mea-sured distances to detect mistakes. For example, con-sider the two scene features A and B in Figure 8a whichare viewed by two one-dimensional cameras. The pointA projects into aL in the left image and aR in the rightimage. If the matching system erroneously identi�es bRas the match for aL (as shown in Figure 8a), the systemproduces a �ctitious scene point, shown as the hollowpoint in the upper right corner of the diagram. If thepair of cameras is moved forward (i.e., from left to right)and the matching system persists in matching B to A,as shown in Figure 8b, then the �ctitious point appearsto move a distance d in the world. If d is signi�cantly

larger than the change potentially caused by inaccuratedisparity measurements, then the aL-to-bR match is ei-ther a mistake or the corresponding point is moving inthe scene.In the next section we describe our experimental sys-tem, which was designed to explore these tests and theirinteractions.The MIME SystemOur purpose in implementing the MIME system wasto explore the idea of maximizing the resolution of rangedata produced by a passive sensor. Our approach hasbeen to minimize the use of explicit or implicit spatialaggregation operations and to recover the bene�cial �l-tering e�ects of spatial aggregation by using a set of teststhat compare the results of multiple matches.The MIME system is implemented on a ConnectionMachine. Since it is a research system it is not opti-mized for speed, rather it is designed to facilitate thecomparison of di�erent matching and �ltering strategies.As such, it has 20 or 30 top-level switches and parame-ters for specifying a particular processing con�guration.The switches include a switch to apply left-right check-ing or not, a switch to apply the spatiotemporal check,and a switch to �ll in missing data by using the resultsof a pixel's neighbors to predict a narrow search region.The parameters include the number of y disparities tosearch for each match (typically between 1 and 3 linesaway from the epipolar line), the sizes of the correlationwindows, and the sizes of the search regions for motionanalysis. (In the next section we brie
y describe an im-plementation of a real-time stereo system that was care-fully engineered to run e�ciently on SRI's indoor robot,7
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Flakey.)Assumptions and Experimental Con-straintsOur experimental data was obtained by mounting apair of black-and-white cameras on a HMMWV vehicle,aligning them manually so their optical axes were ap-proximately parallel, recording the data on VHS video-tape as the vehicle was driven on and o� road, and �-nally digitizing sequences of video �elds from the tapes.As a result, the epipolar geometry was not known pre-cisely, partly because the relative position of the cam-eras was not known precisely and partly because therewas no attempt to compute lens distortions and the like.Therefore, our matching technique could not rely on pre-cise epipolar geometry, and yet it could constrain thesearches to a small number of lines relative to the pre-dicted epipolar line. In general, we and others havefound it di�cult to maintain precise calibrations as thevehicle bounces along over rocks and ditches, making itdesirable to have a system that is capable of workingwith less constrained imagery.The overall image intensities vary from one image tothe next for several reasons. First, some of the datawas gathered with auto-iris lenses, which are designedto cover a wide dynamic range of lighting conditionsby automatically adjusting the apertures of the lenses.These lenses work well, except that they are not linkedtogether, so one might be opening while the other one isclosing. In addition, their control systems tend to \hunt"for the best settings, causing the intensities to 
uctuatecontinuously. A second reason for intensity di�erences isthat there is no way to completely turn o� the automaticgain control (AGC) on our COHU cameras, even thoughthere is a switch on the cameras that says \o�." A thirdreason is that our method of synchronizing the two cam-eras involves using the video from one camera to drivethe second one. This works well, except that it tends todrop the intensity of the initial camera a little becauseits output is doubly terminated. And �nally, the lensesoccasionally got dirty, making some parts of an imagedarker than others.The bottom line is that we could not rely on the ab-solute intensity levels, forcing us to use a normalizedcorrelation metric. The normalized metric does a goodjob of factoring out the gain and o�set between the twocorrelation windows, however, it introduces mistakes be-cause it eliminates the ability to discriminate betweenpossible matches on the basis of absolute intensities. Inother words, if the intensity transforms were better con-strained, a tighter requirement could be placed on po-tential matches, which would reduce the chances of in-correct matches. This line of reasoning is identical to theargument for using as much geometric information (e.g.,epipolar constraints and a limited range of acceptable

object distances) as possible to limit the search areasfor matches. There are two bene�ts. First, the smallerthe search area, the faster the system can �nd the bestmatch. And second, the smaller the search area, thehigher the probability is of �nding the correct match.Similarly in the intensity domain. The better the image-to-image intensities are known, the faster the matchescan be computed and the more likely the correct matchwill be found.One last point about our data acquisition, we did nothave instruments to measure and record the dynamicmotion of the vehicle as the data was obtained. We onlyknew the approximate speed of the vehicle. As a result,we are not able to analytically align results computed atdi�erent times.System DescriptionThe system is based on three multiple-match �lters:the left-right check, the 4-way spatiotemporal check, andthe forward motion version of the vehicle-relative check.The last �lter has been implemented, but not thoroughlytested.Given a new image pair, the \complete" system per-forms the following sequence of operations:1. For each pixel in the left image, locate the bestmatch in the right image (within the search region,which is typically 85 pixels wide by 3 or 7 pixelshigh for our camera con�guration).2. For each pixel in the right image, locate the bestmatch in the left image, using the same size searchareas as in step 1.3. Mode �lter the y disparities computed for the pixelswith matches.4. Select the left-to-right matches and right-to-leftmatches, corresponding to the y disparity producedin step 3.5. Perform the left-right check, marking pixels in theleft image as invalid if their left-to-right and right-to-left matches are not inverses of each other (towithin one pixel).6. For each pixel in the left image, locate the bestmatch in the previous image from the left cameraand mode �lter.7. For each pixel in the previous left image, locate thebest match in the current left image and mode �lter.8. Perform a left-right-type check on the results ofsteps 6 and 7.9. Perform steps 6 through 8 on the two most recentright images.9



10. Perform the 4-way spatiotemporal check, markingpixels as invalid if the sequence of matches aroundthe loop does not agree (to within one pixel).11. For each valid pixel in the left image, perform thevehicle-relative check, marking pixels invalid if theirmotion di�ers signi�cantly from their expected mo-tion.12. For each invalid pixel, use the average of the dispar-ities of its neighbors as the center of a small searchwindow within which to look for a possible match.13. Map the previous statistics into the current left im-age (or all the images) by applying the motion vec-tors computed in steps 6 through 9.14. Update the statistical arrays that have one entryper pixel and keep track of such things as the num-ber of times the pixel feature has been completelyconsistent in a row.The �rst 3 steps provide a way of reducing the heightof the search regions to a single line. We introducedthe option to perform mode �ltering in this re�nementprocess, even though it is a type of smoothing, for tworeasons. First, we expect the y disparities to changeslowly in an image. And second, the smoothing is notdirectly being applied to the raw image or the results,rather it is being used to compute an intermediate resultthat is used to locate the �nal matches. As mentionedearlier, if the epipolar constraints are known precisely,these steps would not be necessary.Figure 9 shows an example of the type of sequence pro-cessed by the MIME system. The images have a rect-angular aspect ratio because they are individual �eldsdigitized from a videotape. They are a sequence of even�elds, which are taken 1/30th of a second apart. Fig-ure 10 shows the disparities computed and �ltered from4 image pairs. In this �gure, lighter points are closerto the sensor. To emphasize the heights of objects, wetransform these raw disparities into ones relative to ahorizontal plane, as shown in Figure 11.The computation of optical 
ow is performed usingSSD correlation followed by a mode �ltering step. Theuse of SSD correlation is justi�ed since the images aretaken from the same camera one thirtieth of a secondapart, and absolute intensity levels are not expected tochange drastically between frames. Mode �ltering makessense in that the 
ow �eld resulting from forward motionis expected to change slowly in an image. Figure 12shows the un�ltered y disparities computed for one ofthe pairs of images in Figure 9. Figure 13 shows themode-�ltered version of these disparities, which are usedto select the row for the best match.We have introduced a slightly di�erent left-right checkthan used by previous researchers. The �rst versions ofthis �lter required that the left-to-right and right-to-left

matches to be exact inverses (i.e., to the pixel). However,because of quantization e�ects, the commonly used ver-sion of the test allows the inverse to be within one pixelof the starting pixel, as shown in Figure 14. Our versionloosens that constraint a bit more by taking into accountthe possibility that the right-to-left match may land onpixel that doesn't have a valid right-to-left match. Itaccepts a pixel in the left image if the matching pixel inthe right image or one of its two neighbors maps backto within one pixel of the initial point (see Figure 15).This change makes the test more symmetric. It alsoaccepts a few more pixels in the left image as valid. Fig-ure 16 shows the results after the left-right test has beenapplied. Figure 17 shows the results after both the left-right and spatiotemporal loop tests have been applied.Figure 18 illustrates a situation in which the left-righttest fails to �lter out a mistake. Two events conspireto produce this erroneous result. In Figure 18, aL ismatched to bR, instead of aR, because something has al-tered A's appearance in the right image (e.g., A may bepartially occluded). Similarly, bR is incorrectly matchedto aL because B's appearance in the left image is di�er-ent. As a result of these two mistakes, the left-right testerroneously accepts the aL-to-bR match.Figure 19 and Figure 20 show an example of this typeof mistake. Figure 19 shows the context of the mistake.It occurs on the front edge of a deep rut. Figure 20 is ablow-up of the images around the mistake. The correla-tion window on the right in the left image is mistakenlymatched to the left window in the right image, instead ofthe right one. The happens because the window strad-dles an occlusion edge between two regions at di�erentdepths, the front edge of the rut and the back of the rut.In the right image, these two subwindows have di�erentdisparities, so that there is no coherent window match-ing the one in the left image. As a result, the matchingsystem �nds a completely new window in the right imagethat looks like the one in the left. This new window isalso along the edge of the rut, causing the same problemfor the matching procedure when it tries to match fromright to left. Unfortunately, but not too surprisingly,this right-to-left match happens to �nd the original win-dow in the left image as its best match (instead of theleft window in the left image). As a result, the mistakepasses the left-right test.Figure 21 shows another example of how a mistakecan pass the left-right test. The X on the left of the leftimage is not in the �eld of the view of the right camera.Therefore, the best match for it is the only visible X inthe right image. If the search from right to left happensto prefer the left X, as indicated in the diagram, thenthis pair of mistakes leads to a mismatch that is notcaught by the left-right check. Again, it took two eventsto produce the problem.Figure 22 shows an example of how a mistake thatis missed by the left-right check can also be missed by10



Figure 9: Sequence of stereo pairs of a Martian-type scene.
Figure 10: Temporally �ltered stereo disparities for a pair of images from Figure 9.11



Figure 11: A skewed version of the disparities shown in Figure 10.
Figure 12: Un�ltered y disparities.

Figure 13: Mode �ltered y disparities.12
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Figure 14: Normal left-right consistency check.
Left Right

Figure 15: New left-right consistency check.
Figure 16: Disparity results after the left-right check has been applied.13



Figure 17: Disparity results after both the left-right check and the spatiotemporal check have been applied.
Left Right

aL     bL aR   bR

Figure 18: A pair of mistakes that conspire to pass the left-right check.
Figure 19: A pixel feature that erroneously passes the left-right check.
Figure 20: A blown-up version of the mistake shown in Figure 19.14
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Figure 21: A pair of mistakes, one of which is caused by a feature being out of the �eld of view of the other image.the spatiotemporal check. This example is similar to theexample in Figure 18. If the cause of the mistakes in�rst pair of images (e.g., partial occlusions) persists overtime, the spatiotemporal test may also miss the mistake.However, if the relative positions of the cameras andscene features change signi�cantly, the test is likely topick up the inconsistency and mark the results as invalid.We added the option to use the results of the neigh-bors of an invalid point to give it a second chance to �nda compatible match. Given an estimate of its disparity,the system searches a small region about that estimatefor the best match. If that match passes all the �lters, itis marked as valid and included in the reported results.In our images, this process �lls in 15 to 20% of the pix-els initially marked as inconsistent by the left-right orspatiotemporal tests.An open question about this process is the selectionof the size of the search region about a suggested dispar-ity. If the region is as large as the region used in step 1,the system will probably return the same matches thatfailed the test in step 5. At the other extreme, if theregion is reduced to a single pixel, the system would re-port that pixel as the match and it would automaticallypass all tests because, by de�nition, it is the best matchin the region. So the question is how to reduce the sizeof the search region in a principled way so that it limitsthe search to an appropriate sized region without inval-idating the evaluation procedures. We arbitrarily usedregions that were 10 pixels wide in our experiments.Experimental ResultsIn order to characterize the e�ectiveness of the varioustests withinthe MIME system, we have applied it to several dif-ferent image sequences with several di�erent parameterand switch settings. Figure 23 shows a typical set ofstatistics produced by the system when both the left-right and spatiotemporal tests are applied. For this par-ticular sequence, the vehicle was turning to the left asit approached a deep rut in a relatively 
at �eld (see

Figure 24). Figure 25 shows the region of the image inwhich we gathered statistics. The rest of the image isout of the �eld of view of the right image. The left-righttest marks an average of 12.1% of the pixels in the leftimage as inconsistent.The motion tracking procedure is virtually perfect andthe up-down version of the left-right check has no troubleverifying the 
ow vectors. The up-down check marksfewer than 3 pixels in every 1000 as inconsistent.The spatiotemporal check marks an additional 4.3%of the points as possible errors, reducing the averagenumber of \consistent" points in the left image to be83.5%. When these tests are convolved together over 4image pairs, the number of completely compatible pointsis 70.0%. When the suggestion procedure is used to �llin missing data, this number increase a few percentagepoints to about 74.3%. The number of gross errors pass-ing all the tests is on the order of 10 to 20 pixels perimage.Flakey's Stereo systemFor several years, Flakey, SRI's indoor robot, has usedultrasonic sensors and a structured-light sensor to locatepotential obstacles in its path. These sensors, however,have several limitations. For example, sonar cannot de-tect thin objects, such as table legs. And the structured-light sensor can only measures distances to points thatare in a particular plane and are close to the sensor.Therefore, in order to increase both Flakey's sensingresolution and sensing range, we have implemented astreamlined version of the MIME stereo system on theon-board Sparc10 processor. The resulting system pro-duces a 105-by-240 range image in .4sec. In addition,Flakey's control system can select horizontal stripes fromthis image to be recomputed at a higher rate. For ex-ample, it can compute 20 rows of the range image at30hertz.Flakey uses a dual lens system to project a pair ofimages into a single video �eld. We originally installed15
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Figure 22: A mistake that passes the spatiotemporal test due to recurring errors.Image Left-right Forward-back Loop Completely CompletelyPair Consistent Consistent Consistent Consistent for Consistent w/last four pairs prediction1 90.27 { {2 88.83 100.00 82.363 87.57 99.96 80.254 88.11 99.97 77.39 70.04 70.045 89.55 99.98 77.54 66.32 66.716 89.83 100.00 84.43 66.68 67.557 88.33 99.99 82.62 67.41 69.138 89.92 100.00 82.05 69.82 72.309 89.32 100.00 85.22 75.13 78.9110 87.19 100.00 77.76 70.03 74.9411 86.41 99.89 77.77 66.88 72.8312 86.43 100.00 75.37 65.16 71.2813 87.37 99.98 75.87 62.91 68.7014 86.81 100.00 82.82 64.72 70.7415 86.72 99.82 78.55 64.00 69.9316 86.32 100.00 82.29 67.52 72.8217 86.45 100.00 77.49 70.51 74.7718 84.76 100.00 76.89 67.15 72.8419 85.37 100.00 78.67 67.80 74.15Figure 23: Table of consistent pixels over time.16



Figure 24: A scene with a deep rut crossing from left to right.
Figure 25: Region from the left image in Figure 24 from which the statistics in Figure 23 were computed.the optical 2-to-1 lens with the hope that it would mini-mize the overall change in intensities from one image tothe next. However, the lens has such strong vignettingproblems that both half images are signi�cantly darkerat the edges than they are at the middle. We tried twoseparate cameras, but our inability to turn o� their au-tomatic gain control has made them di�cult use, espe-cially in buildings with a number of specular �xtures andbright lights.In order to run the stereo matching algorithm as fastas possible, we did the following:� Subsampled the images from left to right, reducing315 columns down to 105. This reduced the rangeof disparities from about 50 to 16, which can becomputed e�ciently in the Sparc10's registers.� Simpli�ed the correlation metric to be the sum ofsquared di�erences, which can be computed signi�-cantly faster than normalized cross correlation. Wecomputed the sums incrementally by sliding the cor-relation window over the search region.� Deleted the spatiotemporal consistency test, butkept the left-right check to validate matches. There-fore, each match is performed twice. In addition, weadded an interest-type operator to 
ag points in theleft image that are unlikely to produce reliable re-sults, because they lack texture.Flakey merges the stereo data with its sonar data,and then plans its paths in the same way it always has.

It uses a two-dimensional, robot-centered map to keeptrack of potential obstacles and landmarks.In the future, we plan to add behaviors to Flakey sothat it can plan data-gathering maneuvers to examineunmeasured regions or closely inspect points of specialinterest.Conclusion and Future WorkIn this paper we have (1) introduced a spatiotempo-ral consistency check for evaluating stereo results and(2) incorporated it into a system for integrating rangedata over time. We are in the process of characterizingthe utility of this approach and its relationship to othersimilar techniques.One observation we've made is that outdoor naturalscenes contain su�cient texture to support dense correla-tion matching. For example, our matching technique lo-cates matches for 70 to 80% of the pixels in most images,even though we use relatively small correlation windows.The 20 to 30% mistakes and no-data regions are causedby such things as bland areas, repeated patterns, andocclusions. Even though the mistakes represent a rel-atively small fraction of the results, most tasks requiresigni�cantly more complete and more reliable data. Forexample, a navigation system cannot recommend driv-ing over areas containing a unmeasured regions or un-explained points 
oating above the ground. Therefore,there is a need for evaluation techniques to assign con-17



�dences to individual pixel features and for higher-levelsensor control strategies to reexamine no-data or ques-tionable regions.The multiple-match consistency checking proceduresdiscussed in this paper provide a form of \structural �l-tering" that we prefer over such techniques as thresh-olding correlation values because they are based on dis-tance measurements for which it is relatively easy to de-termine appropriate thresholds|and there are alwaysthresholds! We view the spatiotemporal �ltering tech-nique that we discussed to be one of several techniquesfrom which a stereo system can be constructed. Onebene�t of it is that it provides a natural way to inte-grate range information over time, which opens up thepossibility of additional temporal analysis of stereo re-sults.In the future we plan to complete the characteriza-tion of this approach, explore higher-level explanationsof the pixels marked invalid by the consistency checks(e.g., produce explanations in terms of occlusions andbland areas), and investigate techniques for combiningthe results of multiple \binary" consistency checks toform scenes models capable of answering such questionsas \What are navigable areas in front of the vehicle?"and \Where are there preliminary indications of a pos-sible obstacle that should be examined more closely?"References[1] Ayache, N., and F. Lustman, \Fast and Reliable Pas-sive Trinocular Stereovision," Int'l Conf. on Com-puter Vision, June 1987.[2] Baltsavias, E.P., \Multiphoto Geometrically Con-strained Matching," Institute for Geodosy and Pho-togrammetry, Zurick, Switzerland, December 1991.[3] Bolles, R.C., H.H. Baker, and M.J. Hannah, \TheJISCT Stereo Evaluation," SRI International Re-port, January 1993.[4] Bolles, R.C., H.H. Baker, and M.J. Hannah, \TheJISCT Stereo Evaluation," Proc. ARPA Image Un-derstanding Workshop, Washington, D.C., pp. 263-274, April 1993.[5] Dhond, U.R., and J.K. Aggarwal, \A Cost-Bene�tAnalysis of a Third Camera for Stereo Correspon-dence," Int'l Jnl. of Computer Vision, Vol. 6, No. 1,pp. 39-58, April 1991.[6] Fua, P.V., \A Parallel Stereo Algorithm that Pro-duces Dense Depth Maps and Preserves Image Fea-tures," Machine Vision and Applications, 1991.[7] Hannah, M.J., \A System for Digital Stereo ImageMatching," Photogrammetric Engineering and Re-mote Sensing, Vol. 55, No. 12, pp. 1765-1770, De-cember 1989.
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