
MOTION VISION AND TRACKING FOR ROBOTS

IN DYNAMIC, UNSTRUCTURED ENVIRONMENTS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

John Iselin Woodfill

October 1992

c© Copyright 1992 by John Iselin Woodfill

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Michael Genesereth
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Oussama Khatib

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Harlyn Baker
(SRI International)

Approved for the University Committee on Graduate

Studies:

iii

Abstract

The use of robots in dynamic and unstructured environments poses difficult challenges

for machine vision. The vision systems for such robots must report changes in the

world quickly and must deal with objects that have not been previously seen or

specified.

A promising approach to building such vision systems is to construct generally

applicable, modular vision services that compute summarizations of camera data that

are of direct utility for action. In this thesis it is argued that such modular vision

services can serve to connect machine vision to robots in dynamic, unstructured

environments.

The thesis describes a real-time vision service that picks out and monitors non-

rigid moving objects in natural scenes. The tracking service uses correlation-based

optical flow for both picking out, and monitoring the camera-relative extent of mov-

ing objects. The algorithms that comprise this service have been implemented on

both massively parallel SIMD, and small-scale parallel MIMD hardware. As these

algorithms are intended to be used for real-time robot systems, the algorithms and

their complexity are described in detail.

The tracking service has been used to build two camera-panning robot systems.

Whenever a large object moves into view, the object is picked out and tracked, while

the robot pans the camera to keep the object centered in the field of view. The

robots have successfully tracked people walking around for long periods. These func-

tioning robots demonstrate both the utility of the tracking vision service itself, and

the manner in which such vision services can be integrated into complete systems.

iv

Acknowledgements

I would like to thank my thesis adviser, Michael Genesereth, and the members of my

reading committee, Harlyn Baker and Oussama Khatib.

I am deeply indebted to Ramin Zabih with whom I have been collaborating for

more than three years. Much of the work described in this thesis is the result of our

joint efforts.

Devika Subramanian rekindled my enthusiasm for A.I. several times. Terry Wino-

grad, Jim Mahoney, and Brian Smith made it difficult to embrace the more paradox-

ical elements of A.I. and machine vision.

I am grateful for the three-year doctoral fellowships provided by the NSF and the

Shell Corporation, and tow years of summer support from SRI International. Xerox

PARC provided extensive access to the Connection Machine and other facilities.

Ramin Zabih, Karin Meyer and Harlyn Baker read drafts of the thesis beyond the

call of duty.

Ana Haunga was extremely supportive during a period of grief. Officemates Yung-

jen Hsu and Eric Berglund provided an atmosphere of solidarity.

My family, Jacqueline Woodfill, Celia Woodfill, Thomas Woodfill and the late

Walter Woodfill deserve thanks.

My friends and housemates kept me sane: Ned Black, Jobst Brandt, Karen and

Lonn Johnston, Elsbeth Meyer, Marc Meyer, Kate Morris, Jack Newlin, Giovanna

Petrone, Lara and Des Garner, John and Alice Kenney, Elgar and Pegaret Schuerger-

Pichler, Marion Sturtevant, and Bob Walmsley.

Finally, I wish to embrace Karin Meyer who has given love and warmth for more

than seven years.

v

— De quoi t’occupes tu exactement?

— De la ré̀ıfication.

— Je vois, c’est un travail trés sérieux,

avec de gros livres et beaucoup de papiers

sur une grande table.

— Non, je me promène.

Principalement je me promène.

Quoted in Greil Marcus’ LIPSTICK TRACES [63]

from André Betrand’s “Le Retour de la colonne Durutti”

as published in “Ten Days That Shook the University”

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Approaches to vision . 2

1.2 Vision services . 4

1.3 An optical flow-based tracking service 5

1.3.1 Is this a vision service? . 8

1.3.2 Is it useful? . 13

1.4 Validation . 14

1.5 Contemporary situation . 16

1.5.1 Active vision . 16

1.5.2 Bottom-up AI . 17

1.5.3 Practical reification . 17

1.6 Joint work and prior publication . 20

1.7 Contributions . 21

1.8 Reader’s guide . 21

2 Preliminaries 22

2.1 Camera model . 23

2.2 Camera motion . 24

2.3 Motion fields and optical flow . 25

2.4 Objects . 27

vii

2.5 Mathematical shorthand . 28

2.6 Complexity analyses . 28

2.7 Local-area dynamic programming . 30

3 Architecture 33

3.1 Tracking service architecture . 33

3.1.1 Motion measurement . 35

3.1.2 Segmentation . 35

3.1.3 Tracking . 35

3.1.4 General interface . 36

3.1.5 Control . 37

3.2 Camera pursuit systems . 39

3.2.1 Latency . 39

3.2.2 The PARC system . 40

3.2.3 The Stanford system . 42

4 Motion measurement 48

4.1 Initial motion measurements . 50

4.1.1 Justifying SSD correlation . 52

4.1.2 Why this window size? . 53

4.1.3 Limitations . 55

4.1.4 Complexity . 56

4.2 Motion smoothing . 57

4.2.1 Limitations . 59

4.2.2 Complexity . 62

4.3 Rectifying optical flow fields . 64

4.4 Complications and improvements . 65

4.4.1 Motion aliasing . 65

4.4.2 Stationary bias . 68

4.5 Related work . 68

4.5.1 Motion estimation . 69

4.5.2 Motion smoothing . 72

viii

4.5.3 Pyramid schemes . 74

4.6 Conclusion . 76

4.6.1 Discussion . 77

4.6.2 Complexity . 80

5 Motion Segmentation 81

5.1 Forming trajectories . 83

5.2 Histogramming trajectories . 84

5.3 Partitioning the histogram . 84

5.4 Partitioning the image . 85

5.5 Limitations . 86

5.6 Complexity . 88

5.7 Related work . 88

5.8 Discussion . 91

6 Motion tracking 93

6.1 Projection . 94

6.2 Adjustment . 96

6.2.1 Global adjustment . 97

6.2.2 Local adjustment . 100

6.2.3 Serial local components . 102

6.2.4 Parallel local components . 103

6.2.5 Discussion . 110

6.3 Related work . 111

6.3.1 3-D model-based approaches 111

6.3.2 Special-purpose tracking . 113

6.3.3 Generic object tracking . 113

6.4 Discussion . 114

7 Conclusion 118

7.1 Lessons . 119

7.2 Complexity . 119

ix

7.3 Open issues and limitations . 120

7.4 Future work . 121

7.5 Summary of contributions . 121

A Special notation and constants 122

A.1 Special notation . 122

A.2 Constants . 124

B Local dynamic programming 125

B.1 Serial dynamic programming . 126

B.2 SIMD dynamic programming . 128

C Motion and tracking algorithms in LISP 132

C.1 Motion algorithm . 132

C.2 Tracking algorithm . 136

Bibliography 142

x

List of Figures

1.1 The image-relative extent of a cat . 6

1.2 Two images of a cat taken 1
30

th of a second apart 7

1.3 An optical flow field of cat motion . 9

1.4 Cat tracking sequence part 1 . 10

1.5 Cat tracking sequence part 2 . 11

1.6 Cat tracking sequence part 3 . 12

2.1 The perspective projection camera model 23

2.2 Effects of a flat imaging surface . 24

2.3 Motion on the imaging surface . 25

2.4 F in the local area surrounding pixel p 31

3.1 Tracking service architecture . 34

3.2 Connection Machine camera pursuit system 41

3.3 Intel i860 based camera pursuit system 43

3.4 Camera pursuit sequence part 1 . 45

3.5 Camera pursuit sequence part 2 . 46

3.6 Camera pursuit sequence part 3 . 47

4.1 The search window used in the implemented systems 51

4.2 The correlation window . 51

4.3 A correlation window before and after a −90◦ rotation 53

4.4 Mode filtering pixel p . 59

4.5 Position of pixel p . 60

4.6 The five misclassified pixels for rm = 3 62

xi

4.7 A straight, high contrast edge with slope −1 : 8 66

4.8 The high contrast edge after sampling 66

4.9 The high contrast edge shifted down and sampled. 67

4.10 Two images of a swinging mug . 77

4.11 Three stages of optical flow computation 78

4.12 The effects of rectification . 79

5.1 First and last images used for segmentation 86

5.2 Trajectory histogram before and after smoothing 86

5.3 Outline of resulting segmentation . 87

6.1 Moving object Õ and approximation A 99

6.2 Motion edges over A and the adjusted object A′ 99

6.3 Recalcitrant connected components 104

6.4 The connectivity graph for a small image 106

6.5 The three sets of vertices . 106

6.6 The radial edges restricted to 4-connectivity 107

6.7 The lateral edges restricted to 4-connectivity 107

6.8 Vertices legally reachable in 3 steps 108

6.9 Projection in action . 116

6.10 Adjustment in action . 117

B.1 Dynamic programming a local sum in serial 127

B.2 Dynamic programming ⊗ in parallel 130

xii

Chapter 1

Introduction

One goal of Artificial Intelligence is the construction of autonomous robots that can

move about performing useful tasks in our everyday world. A robot that is to fetch

a toy from the city park must be able to avoid a fast-moving bicycle, just as it must

not be confounded by a troop of halloween-costumed youths.

If vision is to be a significant component in such robots, it must produce relevant

output quickly, and its performance must not degrade when normal but heretofore-

unseen objects appear. The need for fast response from vision arises from the dynamic

nature of environments such as the city park; a fast-moving bicycle may burst on the

scene. The need to deal with unrecognized or unmodeled objects arises from the

unstructuredness of these environments; halloween costumes span an arbitrary range

of shapes, sizes and appearances.

A promising approach to building vision systems for such robots is to construct

generally applicable, modular vision services that compute summarizations of camera

data that are of direct utility for action. This thesis introduces the idea of vision

services as an approach and describes an implemented, real-time tracking service in

detail. The described vision service uses optical flow for picking out and monitoring

the camera-relative extent of moving objects in natural scenes. It has been used to

implement two systems that pan a camera to follow a moving object.

This introductory chapter discusses two paradigms of machine vision that indi-

vidually appear to be insufficient for robots in dynamic, unstructured environments,

1

CHAPTER 1. INTRODUCTION 2

model-based vision and surface reconstruction. Next, the approach of vision services

is presented. As an instance of the vision services approach, and as the subject of

this thesis, the general capabilities of the tracking service are presented. Validation is

discussed since vision services present both novel issues for validation, as well as par-

tial solutions to these issues. Having introduced both the idea of vision services and

a particular vision service, the contemporary situation of this work is laid out. The

chapter concludes with a summary of the contributions of the thesis and a reader’s

guide.

1.1 Approaches to vision

Model-based vision is one paradigm of machine vision that has allowed robots to act

using visual input in dynamic environments. In model-based vision, prior knowledge

of the objects to be seen or prior knowledge of distinctive visual properties of the

objects to be seen is used to simplify vision tasks. A model-based vision system that

knows what object is to appear in the scene can focus its resources on trying to find

that object and reporting on its whereabouts. Such prior knowledge allows the vision

system to access relevant visual information rapidly.

Lowe [60] has built a system that finds and keeps track of the three-dimensional

(3-D) position and orientation of an articulated but otherwise rigid object. The

prespecification of the dimensions and articulations of the object allow the vision

system to focus on salient details that are expected to be in the scene. Yamauchi [103]

has constructed a system that allows a robot arm to juggle a balloon. The balloon

is known to be of a dark color, and the environment is known to be light colored.

The vision system can rapidly pick out the balloon in an image by looking for a dark

region. The position of the balloon in two binocular images can be used to determine

the 3-D position of the balloon with ease.

These vision systems work exceptionally well in dynamic environments for objects

that have been previously specified. However, in an unstructured environment, there

can be no exhaustive list of specifications of all the objects that can be seen. Nor

can it be the case in an unstructured environment, that all objects of interest can be

CHAPTER 1. INTRODUCTION 3

distinguished by some previously specified set of visual properties. A vision system

for dynamic, unstructured environments must have additional capabilities that do

not depend on prior knowledge of a restricted environment.

Surface reconstruction is another paradigm of machine vision that differs from

model-based vision in that it makes minimal assumptions about the environment.

Instead, the goal of surface reconstruction is to extract as much information as possible

about the 3-D structure of the world in front of the camera or cameras, without

recourse to knowledge about the particular scene.

David Marr [64] was an early advocate of surface reconstruction as a step towards

vision systems with human-like capability. He proposed building a “21
2
-D sketch”

that encodes the orientation and depth of visible surfaces. This surface model could

then be used as a kind of map for determining the shapes and positions of things in

the scene.

In an unstructured, static world, building up a surface model of the environment

has great utility. For example, a mobile robot could form a surface model of the

environment in front of it, and plan a route through the part of the scene that is in

view. The system would work regardless of what kinds of objects were in the scene.

However, surface reconstruction can only be of limited help in dynamic environ-

ments. Building and maintaining an up-to-date surface model may be computation-

ally prohibitive in a changing environment. As environments can be complex, so

too can surface models be complex data structures. Extracting relevant information

from a rapidly changing surface model may be comparable in difficulty to extracting

relevant information from an intensity image. A vision system for dynamic, unstruc-

tured environments must have additional capabilities beyond the ability to construct

surface models at widely spaced intervals.

To summarize, model-based vision can be sufficient for limited dynamic environ-

ments in that it can directly produce relevant information that can be used for action.

It is insufficient for unstructured environments since it presupposes knowledge of the

kinds of things in the scene. Surface reconstruction is sufficient for unstructured,

static environments since it assumes nothing about the scene. Yet, it is insufficient

for dynamic environments as it is unlikely that model construction and access can

CHAPTER 1. INTRODUCTION 4

keep pace with the world.

1.2 Vision services

I propose that the vision needs of robots in unstructured domains can be met by

constructing general, modular vision services. Three principal properties characterize

a vision service: a vision service summarizes camera data in a form that can be directly

used for action; the summarization is general in that it does not depend on prior

knowledge of objects or of the environment; a vision service is taskable in the sense

that once started, it can continue to perform a service for long periods with minimal

input other than images. The idea of vision services is similar to Ullman’s notion of

visual routines [96], in that it emphasizes computing useful properties directly from

camera data. It is dissimilar in that a vision service is an ongoing process, working

on a stream of images, and that the results of a vision service are intended to be used

for acting rather than for further image interpretation.

To clarify the concept and motivation behind vision services, imagine the control

component of a general purpose robot as a stupid, slow, perceptually under-equipped

homunculus. The homunculus has a set of single-purpose knobs and buttons that

control its effectors, a panel of multi-digit numeric displays that tell it what is being

perceived, and even a few buttons for controlling perceptual processes. It has difficulty

making decisions about what to do. The more often it must make a decision, the worse

its decisions become. Such a control component is of interest, since current computer

technology can probably be the basis for such homunculi.

The question is, what kind of inputs should the homunculus receive from its

perceptual system? Digital images would be fairly useless to the homunculus since

they would be presented to it as long sequences of numbers on the display panel.

Similarly, a surface model by itself would be of little help, since it would have to be

encoded as a sequence of numbers to be pored over.

A model-based object tracking system would be useful when the right kind of

object was in view. Perhaps, three numeric displays would encode the coordinates of

such an object when they were in view. The homunculus could then grasp the object

CHAPTER 1. INTRODUCTION 5

by pushing appropriate buttons corresponding to the provided object coordinates.

Vision services are intended to be of use in a robot that is controlled by such a

homunculus in a dynamic, unstructured environment. Because vision services reduce

camera data to a small number of bits that encode relevant aspects of the situation,

effector actions can be chosen simply. Because vision services do not depend on

a priori knowledge of objects or the environment, they are suitable for robots in

unstructured environments. Because vision services are taskable, the robot’s control

system need not devote much of its decision resources to directing the vision service

itself.

Charters of some potential vision services include:

• Report when some large, independently moving stuff appears.

• Report where the nearest stuff is.

• Report fast moving stuff.

• Report on looming stuff that is coming near.

• Keep track of the largest, nearby patch of moving stuff.

1.3 An optical flow-based tracking service

This thesis presents a vision service that picks out and keeps track of moving objects.

Throughout the thesis, “tracking” involves keeping track of the image-relative extent

of an object across time. Figure 1.1 shows an image on which a white line marks the

approximate perimeter of the image-relative extent of a moving cat. The area inside

the white line could be the output of the tracking service for one image. For each

subsequent image, tracking would be expected to provide updated information on the

cat’s new position.

The tracking service makes use of a visual property that all visible moving objects

have, namely, that they move. The idea of an optical flow field is useful when talking

about perceived motion. Consider the two images in Figure 1.2. The lower image

was captured 1
30

th of a second after the upper one. The cat is moving to the right.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: The image-relative extent of a cat

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Two images of a cat taken 1
30

th of a second apart

CHAPTER 1. INTRODUCTION 8

The camera is panning right, and is moving slightly faster than the cat. Thus the cat

appears to have shifted a little to the left, while the background has shifted a good

deal more to the left. Each image is composed of a grid of cells or pixels. An optical

flow field is an approximate answer to the question of where each pixel on the first

image went to in the second image. Figure 1.3 contains a needle diagram showing a

subportion of an optical flow field computed from the two cat images. Each cell in

the needle diagram contains a displacement vector (the thick end of the needle is the

point of the arrow) indicating where each cell is estimated to have gone.

The tracking service makes use of computed optical flow fields in two ways. Ini-

tially, flow fields are used to pick out, or segment new moving objects. Subsequently,

flow fields are used in keeping track of where the objects have gone.

Looking again at the optical flow field in Figure 1.3, it appears plausible that the

pixels corresponding to the cat could be picked out (segmented) by selecting those

pixels that underwent a distinguishing motion. Selecting pixels that move together is

the basis for the segmentation technique used by the tracking service for picking out

moving objects.

Recall that the optical flow field maps pixels on the first image to the second

image. Thus if the image-relative extent of the cat is known on the first image, in

principle, it ought to be possible to derive the image-relative extent of the cat in the

second image by following the vectors of the optical flow field. The idea of using the

optical flow field to map the image-relative extent of an object on one image to that

on the next image is the basis for the part of the tracking service that keeps track of

where objects have gone.

Figures 1.4–1.6 show an extended tracking sequence that demonstrates the output

of the tracking service over 27 frames. The motions from frames 0–3 are used to pick

out a moving cat. The white lines on subsequent images indicate the outline of the

tracked blob.

1.3.1 Is this a vision service?

Vision services were defined on the basis of three characteristics: summarization,

generality, and taskability. The tracking service summarizes each image as a set of

CHAPTER 1. INTRODUCTION 9

Figure 1.3: An optical flow field of cat motion

CHAPTER 1. INTRODUCTION 10

Frame 0 Frame 1 Frame 2

Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8

Figure 1.4: Cat tracking sequence part 1

CHAPTER 1. INTRODUCTION 11

Frame 9 Frame 10 Frame 11

Frame 12 Frame 13 Frame 14

Frame 15 Frame 16 Frame 17

Figure 1.5: Cat tracking sequence part 2

CHAPTER 1. INTRODUCTION 12

Frame 18 Frame 19 Frame 20

Frame 21 Frame 22 Frame 23

Frame 24 Frame 25 Frame 26

Figure 1.6: Cat tracking sequence part 3

CHAPTER 1. INTRODUCTION 13

pixels that mark the image-relative extent of an object or, even more simply, the

image-relative coordinates of the center (centroid) of the object. The summarization

can be used for visual servo-control to keep a camera aimed at an object. If the

centroid lies away from the center of the image, the control system turns the camera

in the appropriate direction to center the object in the image.

The tracking service is general, in that it depends neither on knowing what objects

will look like, nor on knowing about specific visual properties that will distinguish

these objects. If something moves in such a fashion that enough of its motion is

apparent to the system, the object can be picked out and tracked.

Given no instruction, the tracking service will attempt to track the moving object

that takes up the largest region of its field of view. If some higher level system were to

give it the image-relative extent of an object to track, it would try to track the object

as long as possible. The tracking service is taskable, in that it can go on producing

useful information without external direction; on the other hand, when direction is

given, it can change its behavior.

1.3.2 Is it useful?

General arguments for the usefulness of tracking follow two lines: people and animals

appear able to do it, and it has been useful for building systems in Artificial Intel-

ligence. Pylyshyn [78] shows evidence suggesting that humans can keep track of a

small number of independently moving icons. Agre and Chapman [3, 25] have used

simulated tracking to build systems for playing video games.

A more practical demonstration of the usefulness of the optical flow-based tracking

service is its use in implementing two systems that perform camera pursuit. The goal

of camera pursuit is to keep a camera aimed at an object of interest.

In these pursuit systems, a camera is mounted on a robot, and when a person or

other large moving object appears in the camera’s field of view, the system attempts

to center the camera on the moving object. The systems perform visual-servoing to

control the camera using the centroids of moving object that are the output of the

tracking service.

These camera pursuit systems function in dynamic, unstructured environments.

CHAPTER 1. INTRODUCTION 14

The algorithms are suitable for massively parallel implementation, and currently run

at between 10 and 15 frames per second. The algorithms do not depend on properties

of the objects other than that they move and that they be sufficiently visible on the

imaging surface.

The tracking service for the first camera pursuit system runs on a Connection

Machine at Xerox PARC. The tracking service for the second camera pursuit system

runs on five Intel i860 processors in the robotics laboratory at Stanford.

1.4 Validation

Very early machine vision work was characterized by ad hoc techniques that only

functioned on very limited classes of scenes. Guzman [40], for example developed a

system that inferred the 3-D structure of blocks world scenes by relying on very good

edge detection and a large set of heuristics. If a spurious edge was detected, some

edges were overlooked, or some case not covered by heuristics arose, the system would

fail.

In reaction to the early ad hoc period, researchers tended to follow the role model

supplied by the folklore of physics, in the hopes of producing work that could be

validated. By assuming knowledge of light sources, object surfaces, and cameras, by

understanding image formation, and by devising general vision problems, the plan

was to solve vision analytically. The solutions to vision problems in this paradigm

tend to be equations. The proposed advantage to the approach is that one can prove

things about the resultant equations and their relation to the strongly constrained,

assumed world.

This analytic approach to machine vision suffers from several practical difficulties.

Computationally, it is often the case that the derived equations are expensive to solve,

and in some cases numerically unstable. Empirical problems with the approach arise

from the fact that enough may not be known about light sources and object surfaces,

cameras may not agree with camera models, and in general the world may not satisfy

the strong assumptions that were made to derive the equations. The consequences of

these difficulties are that although one can prove how the equations will operate in

CHAPTER 1. INTRODUCTION 15

idealized scenes, one has no idea how they will operate in practice.

An alternate approach is to define modular vision services that can actually be

used for some robot task, and to attempt to design algorithms that support the

services. Two key properties are required of algorithms that are to support vision

services: they must actually work on real images, and they must be suitable for actual

implementation.

One issue in designing vision algorithms for particular tasks is how to validate

them. Given the output of a vision algorithm on one input, how can the output be

evaluated? Supposing that the algorithm works on one input, how can it be shown

to work on many other different kinds of images from different scenes?

Take for example, an optical flow algorithm. Given a sequence of input images,

how can the resulting flow field be evaluated? One approach is to generate synthetic

data based on a model of image formation. With synthetic data, the resulting opti-

cal flow field can be mechanically compared with the intended answer. However, a

successful comparison only shows that the algorithm is consistent with the model of

image formation.

A better approach to validating an optical flow algorithm is to produce an actual

environment that is completely calibrated. Then an optical flow field can be me-

chanically compared with the predicted scene motion of the known calibrated scene.

Although an algorithm can be shown to work in one actual environment using this

technique, no information is gained about how the algorithm will work in other envi-

ronments.

A third approach is to run the optical flow algorithm on many different kinds of

images, and examine the resultant needle diagrams by hand. This subjective approach

is tedious and produces scant information about the validity of the algorithm. It

is extremely difficult to judge the accuracy of a single needle diagram after much

examination. Attempting to evaluate thousands of needle diagrams by eye would be

without point.

Vision services also provide a partial answer to the question of validation. Image

services are intended to compute summarizations of camera data that are useful for

action. If one actually implements a vision service that can run at suitable speeds

CHAPTER 1. INTRODUCTION 16

and connects it to the appropriate robotic device, then the whole system, assuming

that it works, provides ongoing empirical validation. The performance of all of the

components of the system, the optical flow algorithm for example, can be evaluated

based on the performance of the whole.

The advantage of this validation procedure is that it results in real-time vision

systems that actually work. The disadvantage of the validation procedure is, of course,

that one must build real-time vision systems that actually work.

1.5 Contemporary situation

The content of this thesis is most closely tied to two threads of contemporary research

in A.I. and machine vision, active vision, and bottom-up A.I. My own motivation for

pursuing the work is related to a third thread in A.I. and philosophy, namely, practical

reification: the question of how perception can carve up the world into relevant pieces

in a sufficiently plastic way.

1.5.1 Active vision

Active vision has become a significant subfield in the A.I. and vision community.

Judging from a report written by attendees of the Active Vision Workshop [88] that

took place in August of 1991, active vision has three essential elements: active control

of camera parameters, selective sensing, and tight coupling of perception and action.

Vision services and the motion-based tracking service are consistent with the idea of

a tight coupling between vision and action. However, the emphasis in the proposal

for vision services is distinct from those espoused by authors of the seminal papers in

the field.

Aloimonos’ view of active vision emphasizes active control. In his paper Active

Vision, he defines “an observer [to be] active when engaged in some kind of activity

whose purpose is to control the geometric parameters of the sensory apparatus” [5,

P. 35]. The advantage of controlling camera parameters is that “problems that are

ill-posed, non-linear or unstable for a passive observer become well-posed, linear or

CHAPTER 1. INTRODUCTION 17

stable for an active observer.”

Bajcsy in her paper Active Perception, defines “Active Perception (Active Vision

specifically) . . . as a study of Modeling and Control strategies for perception” [9, P.

996]. Her emphasis is on “modeling of the sensors, the objects, the environment, and

the interaction between them for a given purpose.” The notion of paying attention to

the interactions is consistent with that of vision services, however the idea of modeling

objects and the environment goes against the idea of an unstructured environment.

Ballard, in his paper Animate Vision emphasizes that the “central asset of animate

vision is . . . the collection of different mechanisms for keeping the fovea over a given

spatial target” [11, P. 61].

The idea of vision services emphasizes the tight coupling of vision and action and

de-emphasizes other aspects such as selective sensing, and scene and sensor modeling.

The tracking service itself provides support for selective sensing, in that it chooses an

area of interest — a tracked region. Similarly, the systems pan a camera, but do not

use the ability to achieve better measurement.

1.5.2 Bottom-up AI

Recently, Brooks et al. [17, 18, 19, 35] have argued that Artificial Intelligence ought

to be incrementally working up by building very simple robot “insects” that actually

work in the world, rather than starting with very high-level ideas about intelligence

and attempting to work down. The ideas of vision services and of the tracking service

itself are consonant with the bottom-up approach. Vision services would be ideal

for use in such robots. The simple control mechanisms of Brooks’ insects could be

straightforwardly coupled with the tracking service.

1.5.3 Practical reification

Underlying this thesis there is a perplexing issue. How is it that a vision system can,

almost without fail, map visual input to some bits / representations / stimuli that

provide a control system with sufficient relevant information for survival in a dynamic

and unstructured world?

CHAPTER 1. INTRODUCTION 18

Literally, reification means the act or result of viewing something as a material

thing. Practical reification is the process of continually splitting the world up into

units that can be of use in responding to that world. The idea of vision services and

the tracking service perhaps hint at a way of approaching practical reification. A few

quotations may serve to make the issue of practical reification clearer.

Winograd [99], in his discussion relating Heidegger’s concept of blindness to com-

puter systems, points out that “[i]n writing a computer program, the programmer is

responsible for characterizing the task domain as a collection of objects, [and] proper-

ties,” and continues by pointing out that “[t]he program is forever limited to working

within the world determined by the programmer’s explicit articulation of possible ob-

jects, properties and relations among them”(P. 97). This observation can be directly

mapped to problems of perception. If the vision system is programmed to character-

ize the world in terms of a previously specified ontology, then the vision system may

be incapable of characterizing things and events that fall outside of this ontology.

René Descartes, in his Second Meditation of 1642, makes clear that objects are not

exclusively the simple sorts of things that can be easily entered into a vision system’s

model library as wire frame models and characterized with simple predicate symbols.

Let us now consider the commonest things, which are commonly be-

lieved to be the most distinctly known and the easiest of all to know,

namely, the bodies which we touch and see. I do not intend to speak of

bodies in general, for general notions are usually somewhat more confused;

let us rather consider one body in particular. Let us take, for example,

this bit of wax which has just been taken from the hive. It has not yet

completely lost the sweetness of the honey it contained; it still retains

something of the odor of the flowers from which it was collected; its color,

shape, and size are apparent; it is hard and cold; it can easily be touched;

and, if you knock on it, it will give out some sound. Thus everything

which can make a body distinctly known is found in this example.

But now while I am talking I bring it close to the fire. What remains

of the taste evaporates; the odor vanishes; its color changes; its shape is

lost; its size increases; it becomes liquid; it grows hot; one can hardly

CHAPTER 1. INTRODUCTION 19

touch it; and although it is knocked upon, it will give out no sound. Does

the same wax remain after the change? We must admit that it does; no

one denies it, no one judges otherwise. What is it then in this bit of wax

that we recognize with so much distinctness? 1 [32, P. 29]

Somehow, a vision system must report on the continued presence of a ball of wax.

Something other than prior knowledge of its outward appearance, something about

the coherence and stability of the ball of wax makes it perceivable.

Opening his essay, Things and Their Place in Theories, Quine puts things on level

ground.

Our talk of external things, our very notion of things, is just a con-

ceptual apparatus that helps us to forsee and control the triggering of

our sensory receptors in the light of previous triggering of our sensory

receptors [79, P. 1].

The conceptual apparatus that is our notion of things is not a fixed structure; what is

to be taken as a thing is open. “There is room for choice, and one chooses with a view

to simplicity in one’s overall system of the world.” [79, P. 10] Quine’s promiscuity

towards objects is far-reaching.

We need all sorts of parts or portions of substances. For lack of a

definable stopping place, the natural course at this point is to admit as

an object the material content of any portion of space-time, however ir-

regular and discontinuous and heterogeneous. This is the generalization

of the primitive and ill-defined category of bodies to what I call physical

objects [79, P. 10].

Quine’s primary concern is with language and theories. However, the observation

that the carving up of the world into objects is a pragmatic issue applies as well to

perception.

1The rest of the paragraph is part of an argument for Idealism that diverges from the present
discussion: “Certainly it cannot be anything that I observe by means of the senses, since everything
in the field of taste, smell, sight, touch, and hearing are changed, and since the same wax nevertheless
remains.”

CHAPTER 1. INTRODUCTION 20

Thus, the attempt to pick out and maintain an individual object solely on the

basis of motion is an attempt to get at a perceptually grounded ontology. More

generally, properties such as motion and depth can be used to carve up simple worlds

into usable entities independent of any interpretation.

The thesis contributes to both bottom-up A.I. and active vision. It is also a

demonstration of a vision system that distinguishes some objects in a dynamic, un-

structured environment.

1.6 Joint work and prior publication

This work was done at Stanford, SRI, and Xerox PARC. It was carried out in the

context of a joint research programme with fellow Ph.D. student Ramin Zabih. Many

of the ideas for algorithms in the tracking service arose during joint experimentation

and discussion over many months. In an ideal world no more would be said. How-

ever, academe demands additional detail. The ideas of the optical flow and tracking

algorithms are joint. The algorithms for efficiently computing the desired results are

primarily mine. As I was particularly interested in actually connecting the track-

ing algorithms to the world, I am mostly responsible for the motion segmentation

technique and the control regimen that allows the system to run on incoming video

data.

Again, the robot systems were jointly constructed by Ramin and me. Jon Goldman

of Thinking Machines produced special purpose microcode to speed certain computa-

tions on the Connection Machine at Xerox PARC. Alain Fidani provided an interface

to Khatib’s COSMOS system for controlling a PUMA robot arm at Stanford. Penni

Sibun untiringly performed expert modeling for several hours. David Sobeck and the

Symbolics Corporation lent me a Lisp machine for several years.

Some of this work has appeared previously in [100, 101, 102].

CHAPTER 1. INTRODUCTION 21

1.7 Contributions

This thesis presents an optical flow-based tracking and segmentation system. Novel

algorithms that perform efficient optical flow computation, flow-based tracking, and

cross-temporal, trajectory-based object segmentation are described and analyzed.

The idea of vision services as a model for vision systems that are to be used in

dynamic, unstructured domains is introduced, and shown to subsume the tracking

system. The tracking service and its component vision algorithms are validated with

two real-time robotic camera pursuit systems.

1.8 Reader’s guide

The second chapter of the thesis contains a discussion of basic notions including a

model of cameras, camera and object motions, and various notation. The chapter

also introduces dynamic programming techniques that make real-time computation

feasible. Chapter 3, Architecture, introduces the architecture of the tracking service,

and describes the embedding of this architecture in two implemented camera pursuit

systems. The next three chapters cover the main components of the tracking service.

Chapter 4, Motion measurement, describes the algorithm used to compute optical

flow fields. Chapter 5, Motion segmentation, introduces the motion trajectory-based

segmentation scheme used to pick out independently moving objects. Chapter 6,

Motion tracking, presents the algorithm that tracks the position of an object from

frame to frame. Finally, Chapter 7, concludes the thesis. Appendix A contains a

table of special symbols along with the values of various important constants. Ap-

pendix B gives a more complete explanation of the dynamic programming techniques

introduced in Chapter 2. In order to better communicate the described algorithms,

they are also presented in Appendix C as LISP code.

Each chapter presenting descriptions of developed algorithms has a section dis-

cussing related algorithms and a section containing an analysis of the computational

complexity of the algorithms. Section 2.6 touches on the general model of complexity

used. The complexity of the presented algorithms is summarized in Section 7.2.

Chapter 2

Preliminaries

This chapter presents assumptions, notation and ideas that recur throughout the the-

sis. First, a model of cameras is introduced, and the effects of camera motion are

examined. Next, the ideas of motion fields and optical flow fields are presented. Anal-

ogous notions for object representation are discussed in Section 2.4. A small amount

of mathematical shorthand is introduced in Section 2.5. The chapter concludes with

a brief discussion of algorithmic complexity and a summary of the basic dynamic

programming techniques that make many parts of the system feasible.

Various symbols and notation are needed for talking about the vision algorithms

and their complexity. The special symbols are summarized in Appendix A. The set of

discrete image pixels is denoted P. Pixels are usually considered as atomic elements

that are associated with a 2-D grid, but sometimes pixels are coordinate pairs, or

vectors 〈x, y〉. An intensity is a natural number in the range {0, . . . , 2k − 1} for a

constant k, almost invariably 8. A gray-level image is a map from P to intensities,

written I : P −→ {0, . . . , 2k − 1}. A gray-level image is thus an array of eight bit

numbers. The set of gray-level images is denoted I. A boolean image maps from P

to {0, 1}. A boolean image is thus a bitmap, or array of bits. Sometimes boolean

images are treated as sets of pixels or unary relations on pixels. The set of boolean

images is denoted B.

22

CHAPTER 2. PRELIMINARIES 23

Imaging surface

v

Center of
projectionA

A
A

A
A

A
A

A
AAK

6

y

�
x

�
z

s

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHY

s

p

p

Point in world

Figure 2.1: The perspective projection camera model

2.1 Camera model

The analysis in subsequent chapters assumes a standard perspective projection model

of cameras. Figure 2.1 depicts this camera model, and its corresponding coordinate

system. The x and y axes are the x and y axes of the image. The z axis is oriented

from the world in front of the camera toward the imaging surface. A ray running from

the object at point p passing through the center of projection, projects to a point p

on the imaging surface.

The vertical and horizontal fields of view, fovv, and fovh, are important angular

measures of the lens and camera system. The vertical (horizontal) field of view is

the angle between the top and bottom (left and right) edges of the imaging surface

measured from the center of projection. The fields of view determine the approximate

vertical and horizontal visual angles subtended by pixels on the imaging surface.

CHAPTER 2. PRELIMINARIES 24

Figure 2.2: Effects of a flat imaging surface

2.2 Camera motion

Arbitrary camera motion can result in arbitrary changes on the imaging surface. Cam-

era motion relative to a fixed environment can be described in terms of translations

and rotations about the three axes. Parallax resulting from translating the camera

along the x axis, for example, causes points on the imaging surface corresponding to

nearby objects to shift further than points corresponding to distant objects. The hu-

man eye when pivoting in its socket performs a particularly simple kind of movement

about the center of projection: namely, rotations about the x and y axes. Several

of the algorithms described in later chapters rely on just such camera motions (see

Sections 5.8 and 6.2.5).

Since imaging surfaces are flat, camera rotations about the x and y axes result

in different projected motions at the center of the imaging surface and at its edge.

Luckily, for points within a fairly narrow field of view, these variations are not great.

Figure 2.2 depicts this situation. Consider a camera with a 1-D imaging surface,

and a point in the world whose projection on the imaging surface subtends an angle

of θ1 with the principal axis of the camera. When the camera rotates an angle of

θ2−θ1, the projected point on the imaging surface now subtends an angle θ2 with the

CHAPTER 2. PRELIMINARIES 25

Imaging surface

v

Center of
projectionA

A
A

A
A

A
A

A
AAK

6

y

�
x

�
z

s

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHY

s

p0

p0

s

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXy

s

p1

p1

������*

�
�
��

Projected
motion
@

@
@

@@R

Actual motion

6

Figure 2.3: Motion on the imaging surface

z axis. The distance that the projected point has traveled on the imaging surface d,

is (tan θ2 − tan θ1)f , where f is the focal length of the camera. Clearly, as the initial

angle θ1 gets larger, for the same rotation angle θ2 − θ1, d gets larger. The derivative

of d
f

with respect to θ1 as θ2 goes to zero is the derivative of tan θ1,
1

cos2 θ1

. For small

angles θ1, cos2 θ1 ≈ 1. Hence, for relatively narrow fields of view, camera rotations

about the x and y axis result in approximately uniform motion across the imaging

surface.

2.3 Motion fields and optical flow

When an object in the field of view of the camera moves, there can be a correspond-

ing change on the imaging surface of the camera. This corresponding change on the

imaging surface has the potential of being related to the actual motion by the pro-

jection relation. Consider the case shown in Figure 2.3 in which an object has moved

left and away from the camera. At time t0, a point in the world, p0, picks out a

CHAPTER 2. PRELIMINARIES 26

point p on the surface of the object, while p0 is the point on the imaging surface that

corresponds to p0 as projected through the lens of the camera. At time t1, after the

object has moved, p1 picks out the same point p on the surface of the object, and

p1 marks the point on the imaging surface that now corresponds to p1. Although

the motion from p0 to p1 involves a change in depth (along the z axis), vectors on

the imaging surface can only represent the component of the motion parallel to the

imaging surface. Nevertheless, the motion of each point in the field of view of the

camera is mapped by the projection relation to a displacement vector on the imaging

surface. Since displacements on the imaging surface do not reflect changes in depth,

displacements measure motions in terms of visual angles, not distances in the world.

A motion field is a field of displacement vectors. Each displacement vector is

associated with a point on the imaging surface. The displacement vector at each

point corresponds to the 2-D projection of a 3-D motion occurring at that point

in the field of view between times t0 and t1. Equivalently, a motion field can be a

mapping between points on the imaging surface at time t0 and points on the imaging

surface at time t1. If the camera is moving in such a way that the imaging surface

contains points at time t0 for which there are no corresponding points at t1, these

points are mapped to ⊥ by the motion field. Similarly, when an object is moving

against a background, points that have been occluded by the object are also mapped

to ⊥. A motion field can be thought of as representing the projection of true visible

motion; it maps each point on the imaging surface that is the projection of a visible

point in the world at time t0 to a point on the imaging surface that corresponds to

the projection of the same visible point in the world at time t1.

Discrete motion and optical flow

The ideal notion of motion fields can be adapted to the discrete case. A discrete

motion field maps each pixel on the imaging surface to another pixel on the imaging

surface, or ⊥. The motion of each pixel is intuitively defined to be the predominant

motion of the points within the pixel. Since motion fields are only an expository device

for introducing the idea of scene motion, sampling issues will not be discussed. From

now on, motion fields will be discrete maps and will be written M̃ : P −→ P ∪ {⊥}.

CHAPTER 2. PRELIMINARIES 27

Motion fields are a useful abstraction, but the only evidence that computer vision

can access is arrays of gray-levels corresponding to changes in light intensity. The

motion field that arises when a sheet of white paper slides across a white paper

background represents the motion that is occurring. However, from images of the

scene, no changes are apparent. The difference between what is apparent in the

images and the actual projected motions leads to the distinction between optical flow

fields and motion fields. Horn describes optical flow as the “apparent motion of

brightness patterns observed when a camera is moving relative to the objects being

imaged” [46, P. 278]. The apparent motion of a brightness pattern is an elusive

concept. The famous illusion that a barber pole appears to be moving upwards when

it is merely rotating argues that optical flow cannot have a simple, unambiguous

definition. The term “optical flow” is used to denote approximations to the motion

field, M̃ . Given two images I i and I i+1, captured at times and t0 and t1 respectively,

denote an optical flow field M i : P −→ P ∪ {⊥}. The best such optical flow field is

identical to the discrete motion field arising from motions between times t0 and t1.

The set of optical flow fields is written M. When pixels are viewed as vectors, the

set of differences of pixels, i.e., displacement vectors, is denoted D. Occasionally, a

different concept of an optical flow field that maps a pixel to a displacement vector

is used: M i : P −→ D ∪ {⊥}. Multivalued flow fields that map pixels to sets of

pixels are denoted M∗
i : P −→ 2P ∪ {⊥}, or M∗

i : P −→ 2D ∪ {⊥}. The set of such

multivalued flow fields is denoted M∗.

2.4 Objects

For ease of expression, it will often be useful to consider the case where there is

exactly one moving object in the field of view, and that delineating the extent of

the object is unproblematic. Given that there is one moving object of indisputable

outline, an abstract boolean image Õi : P −→ {0, 1} can be defined that corresponds

to the actual projection of the moving object on the imaging surface when an image

was taken. Just as an optical flow field is an approximation to the motion field, a

boolean image Oi is an approximation to Õi on image I i.

CHAPTER 2. PRELIMINARIES 28

2.5 Mathematical shorthand

Several of the described algorithms involve finding the element of a set S for which

the value of some function f is maximal, i.e., the element a of S such that f(a) is

maximal. This maximal element is denoted supf S. In the case that the extremum

is not unique, a random element from the set of extremal elements is chosen. If S is

empty, the result is ⊥, i.e., random-element({}) = ⊥.

sup
f

S ≡ random-element({ a ∈ S | f(a) = max
a′∈S

f(a′) })

It is often the case that a function f maps from S0 to S1 ∪ ⊥. Such a function is

injective if

∀a ∈ S0 f(a) = ⊥ ∨ ∀a′ ∈ S0 f(a′) = f(a) ⇒ a = a′.

2.6 Complexity analyses

One prominent lacuna in much low-level vision research is any mention of algorithmic

complexity1. When the goal of vision research is, to use a phrase of John McCarthy’s,

“epistemological adequacy,” [65] that is, to see what can in principle be extracted

from an image, ignoring issues of cost is reasonable. However, when the goal of

vision research is to develop algorithms to support the performance of some task in

a dynamic environment, such analyses become crucial.

One way to analyze vision algorithms is to treat images as being of constant size

— say 512×512. However, this stance forces one to conclude that practically all low-

level vision algorithms take constant time — i.e., some multiple of the constant image

size. Image size is thus included as one parameter in cost analyses. For example,

with an N × N image, a connected components algorithm might have complexity

O(N2 + 2 lg N).

Most of the algorithms discussed in this thesis perform the same operation on

each pixel. The algorithms generally operate over a subregion surrounding a pixel.

The radii of these local regions are also parameters in complexity analyses.

1Some researchers such as Tsotsos [94] have emphasized complexity analysis for higher-level
vision.

CHAPTER 2. PRELIMINARIES 29

It might seem that all of these local algorithms would have the same complexity

O(N2r2) where r is the local radius. However, what matters in many of these algo-

rithms, is how dynamic programming, i.e., the ordered caching of partial results, can

be used to bring the complexity closer to O(N2). Sadly, when real-time performance

is required, big-oh analysis is not sufficient; computation per image must be achiev-

able within a fixed number of target machine operations and instructions-per-pixel

becomes the unit of interest.

Since the algorithms have been implemented for both serial2 and parallel machines,

analyses are presented for both serial and parallel versions of the algorithms. The

parallel algorithms were designed for a Connection Machine (CM), a massively parallel

single instruction multiple data (SIMD) computer with hypercube connectivity [44].

Performing vision tasks on a SIMD machine is modeled so that there is one pixel

per processor3. Since every instruction must be executed on each processor on a

SIMD machine the N2 term corresponding to the image size is omitted from SIMD

complexity measures. The performance of an algorithm running on a SIMD machine

depends not only on the number of local operations performed, but also on how

much communication is performed. The comparative costs of local computation and

communication differ between machine architectures. It is therefore expedient to

maintain distinct analyses for computation and communication.

As there is no generally accepted model for CM complexity analysis, a simple three

component model is used. The three cost components include: local, arithmetic oper-

ations; local, uniform, hypercube communications; and global, non-uniform commu-

nications. A local communication, such as “for each processor (pixel), send a datum

to its neighbor to the north,” is much cheaper than a global, non-uniform communica-

tion, such as “for each processor, send a datum to some other arbitrary processor that

2In fact the “serial” version of the tracking system runs on a multiple instruction multiple data

(MIMD), five Intel i860 processor system. It is serial in the sense that communication is minimal,
and that the same algorithms would be used to implement the same system on a single, five times
faster truly serial machine.

3The assumption of one pixel per processor is justified since even if multiple pixels are handled
by a single processor only an approximately constant multiplicative factor is introduced to the
computation. The tracking system at Xerox PARC processes 128 × 128 images and the PARC CM
has 1282 processors.

CHAPTER 2. PRELIMINARIES 30

it specifies.” On the CM, the cost of an operation increases approximately linearly

with the number of bits processed. However, since there are significant start-up costs

associated with all operations, in most cases the length of operands is ignored and

only the number of operations is counted. Each SIMD algorithm is assigned three

cost expressions, one for each of the three modeled components.

2.7 Local-area dynamic programming

When a value, F (p), is associated with each pixel p, it is often useful to compute a local

summary of values of F in a region surrounding each pixel. If the desired summary

is of the right form, then particularly efficient algorithmic techniques can be used to

compute the summaries at each pixel. When the techniques apply, since the local

areas surrounding adjacent pixels overlap, the problem of computing summaries can

be decomposed into subproblems such that partial results can be cached and shared

across pixels. As noted by Aho et al., “the filling-in of a table of subproblems to get

a solution to a given problem has been termed dynamic programming” [4, P. 311]4.

The remainder of this section describes bounds on the cost of performing these local

summarization operations. Details of the dynamic programming techniques used to

achieve these bounds are described in Appendix B.

If the local region surrounding each pixel is rectangular and unvarying in size,

and if the summary desired at each pixel is the result of combining the local values of

F with an associative binary operator ⊗ then the dynamic programming techniques

apply. The situation at a pixel p is shown in Figure 2.4. The local area is w pixels

wide and h pixels high. If values of F are integers, and the desired summary of the

local area is the sum of values of F , then ⊗ is addition. In this case, the desired result

for a pixel p, σ(p, w, h), can be written as a summation.

σ(p, w, h) ≡
∑

[−w
2

<i≤w
2

]

∑

[−h
2

<j≤h
2
]

F (p + 〈i, j〉)

4Note that this notion of dynamic programming is more general than that of dynamic-
programming algorithms that cache partial results in order to find optimal solutions to a certain
class of problems.

CHAPTER 2. PRELIMINARIES 31

F (p)

� -w

?

6

h

Figure 2.4: F in the local area surrounding pixel p

In the general case of an associative operator ⊗, σ(p, w, h) can be written using
⊗

.

σ(p, w, h) ≡
⊗

[−w
2

<i≤w
2

]

⊗

[−h
2

<j≤h
2
]

F (p + 〈i, j〉)

Interestingly, the dynamic programming techniques used for local-area compu-

tations differ for serial and parallel implementation, and indeed have distinct com-

putational cost. When used for serial computation in which pixels are processed

sequentially, dynamic programming can take advantage of full results generated for

previous rows, and earlier columns. Benefits arise from not repeating these earlier

computations. These techniques can be used on serial computers for forming sums of

integers and vectors over local areas.

When used for parallel computation, processing happens simultaneously over the

image, thus only partial results from earlier operations can be shared. Savings arise

both from shared computation and reduced communication. Besides local-area sum-

mation, concatenation proves to be a cost-effective local-area operation for accessing

neighborhood information in parallel implementation.

If the operator ⊗ has an inverse, σ(p, w, h) can be computed for each pixel p

CHAPTER 2. PRELIMINARIES 32

on an N × N image on a serial machine in O(4N2) ⊗-operations. If ⊗ has no

additive inverse, σ(p, w, h) can computed on a serial machine in O((lg w + lg h)N2)

⊗-operations. There is a fixed overhead that occurs at the edges of the matrix F in

computing ⊗ on a serial computer. This overhead is not included in the complexity

figures, as it is independent of image size. However, if the serial computation were

split across many serial processors, this overhead could become significant. In the

extreme, running the serial algorithm on each processor of the Connection Machine

would incur a great deal of communication and would cost approximately O(wh)

⊗-operations per pixel.

On a SIMD computer, computing σ(p, w, h) requires O(lg w + lg h) ⊗-operations

per processor, regardless of whether ⊗ has an inverse. Computing σ(p, w, h) on a

SIMD machine with hypercube connectivity also requires O(lg w + lg h) hypercube

communications per processor.

In general, if ⊗ is an operation whose output is larger than its input, e.g., addition

on the natural numbers, there is a logarithmic complexity term related to the size of

the output. However, for moderate local areas, this logarithmic factor stays below

the word size of a machine, and is ignored.

Chapter 3

Architecture

This chapter presents the architecture of the tracking service itself as well as the

architectures of two systems that have used the tracking service to implement camera

pursuit. This discussion of architecture serves to explain the roles of the submodules

of the service and the role of the tracking service in the implemented systems.

3.1 Tracking service architecture

The overall architecture of the tracking service is shown in Figure 3.1. Arrows sig-

nifying data paths show that information flows primarily bottom to top. Images

enter the motion measurement module at the bottom of the service. There are two

alternate top level interfaces to the tracking service. The more general interface is

delineated by the dashed line below the box labeled “control.” Outputs and inputs

at this level are boolean representations of objects. This interface would be used to

connect the tracking service to more general vision systems. The other interface to

the tracking service is the arrow at the top of the diagram. At this level, the service

only emits information about the current image-relative position of an object that is

being tracked.

The modules of the tracking service will be described in the order they appear in

the path of data: motion measurement, segmentation, and tracking. Issues related to

the more general interface are discussed before the box labeled “control” is considered.

33

CHAPTER 3. ARCHITECTURE 34

Motion
Measurement

Segmentation Tracking

Control

Images

6

@
@

@
@

@
@

@@I

�
�

�
�

�
�

���

Optical Flow
Fields

�
�

�
�

�
�

��� @
@

@
@

@
@

@@R @
@

@
@

@
@

@@I

Object Maps

6

Object Centroids

Figure 3.1: Tracking service architecture

CHAPTER 3. ARCHITECTURE 35

3.1.1 Motion measurement

The motion measurement module takes in a pair of images Ii, and Ii+1, and produces

an optical flow field M i, that approximates the motion that is happening in the field of

view during the interval between the two images. It can be viewed as a function from

a pair of images to an optical flow field, motion : I × I −→ M, and is described in

detail in Chapter 4. The motion measurement module needs no control information;

it computes a new optical flow field as each successive image arrives.

3.1.2 Segmentation

The segmentation module takes as input a small number, ns, of successive optical flow

fields and produces a bounded set of boolean images that are approximations to the

current image-relative positions of the objects that it has picked out as having moved

during the period that is covered by the ns flow fields. Formally, segmentation can

be written as a function mapping sequences of optical flow fields to sets of boolean

images segment : Mns −→ 2B. The algorithm used for segmentation is described in

detail in Chapter 5. The segmentation module expects control information in the

form of requests to perform segmentation.

3.1.3 Tracking

The tracking module works on two optical flow fields M i, and M i+1, and an initial

boolean image Oi. The two flow fields are the results of processing successive pairs

from the three images, Ii, I i+1, and I i+2. The boolean image Oi approximates the

position of an object in image Ii. The tracking module produces a new approx-

imation Oi+1 that represents the position of the object in image I i+1. Formally,

track : M×M×B −→ B. Across time, the tracking module uses a succession of

n optical flow fields M1, · · · , Mn+1, starting from an initial boolean image O1 that

is an approximation to Õ1. The output at image In, On, is intended to be an ap-

proximation to Õn. The algorithms that support this functionality are described in

Chapter 6.

CHAPTER 3. ARCHITECTURE 36

In normal operation, the tracking module performs in lock-step with the motion

measurement module. As each new optical flow field arrives, another tracking step

is made, and the resulting boolean object map is passed up. When a higher level

module wants to start tracking a new object, the tracking module receives control

information in the form of a request to start tracking a new object, along with a

boolean object map that picks out the new object. The boolean object map must be

current in the sense that it must pick out the position of an object in the image I i,

that was used for determining the current flow field M i.

3.1.4 General interface

The more general interface to the tracking service is marked by the dashed line

above the segmentation and tracking modules in Figure 3.1. This interface is in-

tended to provide functionality somewhat like that of Pylyshyn and Storm’s model

of FINST’s [78] and Agre and Chapman’s [3] notion of markers. The term marker is

adopted from the latter source. At this level, the service provides a small, fixed num-

ber of markers. Each marker can be associated with a region that is being tracked.

If a region is associated with a marker, the marker is said to be bound, otherwise it

is free. The system can track as many distinct moving objects as there are markers.

The interface allows a controlling system to request that markers be bound to regions

on the imaging surface. Similarly, the controlling system can expect to be told the

current whereabouts of the region bound to each marker. Along with this support

for markers, the tracking service can be asked to look for moving objects.

The interface can be summarized by its control signals, inputs and outputs.

Control signals: • Find moving regions!

• Bind marker j to a region!

Input: • Regions to which to bind markers.

Output: • Current positions of regions bound to markers.

• Regions resulting from segmentation.

CHAPTER 3. ARCHITECTURE 37

This interface is difficult to use in that a controller must respond to the service’s

output, issue control signals, and pass in data, all at frame rates of 10 to 15 frames

per second. When a request is made to track a region of the image, that region must

reflect the current approximate position of an object; tracking a region that no longer

corresponds to an object is useless.

The interface is made still more difficult to use by imperfections in the tracking

and segmentation modules. Over the course of many frames, the tracked region

associated with a moving object may dwindle, or disappear. This degradation of

markers can arise when an object stops, when it is occluded, or for many other

reasons. Segmentation is not perfect either. It picks out parts of the imaging surface

that are moving with similar trajectories. Multiple objects can move in unison and

be picked out as one object. If only part of an object moves during the segmentation

interval, only the moving part will be picked out.

3.1.5 Control

The control component that provides the object centroid interface is a client of the

more general interface. Its goal is to keep track of the largest, independently moving

object in the field of view, given the real-time requirements and the slightly unreliable

segmentation and tracking operations provided from below.

This goal is achieved with a fairly complex, slightly heuristic, two part strategy:

initially, choose a large object that has been picked out, or segmented, at least twice;

and once an object has been chosen, keep track of the same thing as long as possible.

This functionality is achieved by maintaining two markers for tracked objects.

One marker, the primary marker, is used for keeping track of an object that has

been chosen to be tracked. The other marker, the secondary marker, is used for

choosing objects. In normal processing, if a marker is bound to a region, it continues

to be bound to the region, unless tracking loses the object altogether. If the primary

marker is bound, the control component reports the centroid of the region currently

associated with the primary marker at each frame. Periodically the control component

requests that a segmentation be performed.

CHAPTER 3. ARCHITECTURE 38

The segmentation module emits a small, bounded number of regions or segmen-

tations that are considered to be sets of pixels that are moving together. Often one

of these segmentations corresponds to the background. This segmentation should

never be considered an independently moving object, and so is filtered out by test-

ing whether most of the periphery of the image is included in the segmentation, or

whether the segmentation consists of some large fraction of the image.

Occasionally, anomalous effects cause a scatter of like-moving small groups of

pixels to be segmented as one moving object. In order to eliminate these fragmented

segmentations, any segmentation, i.e. boolean image, that has too many isolated

patches is discarded.

To see how to detect segmentations consisting of scattered pixels, consider their

opposite: a single circular region. A measure that captures the coherence of a circular

region is the ratio of square of the perimeter of the region to its area. For a circular

region of any radius, this quantity is 4π. The measure increases for any less coherent

patch than a single circle. A segmentation is discarded if the measure exceeds a

threshold.

When a segmentation occurs, the control module attempts to match up new seg-

mentations with the current bindings of its markers. This matching up of newly seg-

mented regions and the current bindings of the two markers is done based on which

markers are bound, and whether there is any correspondence between the segmented

patches and the current bindings of the markers.

If (1) the primary marker is free, if (2) the secondary marker is in use, and if (3)

a new segmentation that corresponds to the current binding of the secondary marker

is found, then since the object has now been segmented at least twice, it is chosen as

the new object to be tracked by the primary marker. That is, the primary marker

is bound to the new segmentation corresponding to the old binding of the secondary

marker, and the secondary marker is freed or bound to another new segmentation.

If (1) the primary marker is bound and if (2) some segmentation corresponds to

the current binding of the primary marker, the primary marker is bound to the new

segmentation.

Similarly, if (1) both the primary and the secondary marker are bound, and if (2)

CHAPTER 3. ARCHITECTURE 39

some segmentation corresponds to the current binding of the secondary marker, the

secondary marker is now bound to the new segmentation.

Finally, if the secondary marker is free, it is bound to the largest new segmentation

that does not correspond to the primary marker.

This complex control strategy provides a transparent vision service that emits the

centroid of a large moving object in the field of view at each frame. The shortcomings

of the segmentation and tracking components are attenuated by the redundancy of

two markers, as well as by repeated segmentations.

3.2 Camera pursuit systems

The tracking service has been used to implement two systems that pan a camera to

follow a moving object. The basic control strategy is very simple. If the tracking

service reports that an object is moving away from the center of the image, the

camera is panned in the appropriate direction. The tracking service makes use of

no information about how the robot is moving. Similarly, all panning commands

are based on current measurements. No extrapolation of future object positions are

computed or used.

The first system, constructed at Xerox PARC, makes use of a 16 thousand pro-

cessor Connection Machine for vision computation, and a Heathkit Hero 2000 mobile

robot to rotate the camera. The second system, constructed at Stanford University,

performs vision computation on five Intel i860 processors, and pans and tilts a camera

with a PUMA robot arm.

3.2.1 Latency

A fairly fundamental problem with doing real-time vision with contemporary digitiz-

ers and general-purpose computers is one of data transmission and latency. At some

time t, an image is captured in the video camera and ends up in digitizer memory

perhaps one frame time (one thirtieth of a second) later. The digital image then needs

to be shipped into the main memory of processors that are going to perform vision

CHAPTER 3. ARCHITECTURE 40

computations on them. Perhaps this second transmission takes another frame time.

Once digital images are in main memory, the vision computation must be performed.

Vision computation takes at least another frame time. If there is serial decomposition

of vision processing such that one processor must finish before another begins, addi-

tional frame times can be lost. In the best of worlds, the results of vision processing

match the world as it was a tenth of a second ago. For the CM system, the latency

is almost half a second. For the Stanford system, the latency is perhaps a third of a

second.

The problem with such latency, is that the object centroid that is emitted by

the tracking service specifies where the object was relative to where the camera was

pointed when the image was captured a third or a half second ago. There is no way

to get around the fact that the information is old. However, given that the camera

may be panning, information about object positions relative to the camera heading

of some time ago is quite useless, unless the camera heading at the time of image

capture is known.

Thus, the robot systems are set up so that whenever an image is captured, the cur-

rent heading of the camera is also recorded. When a new object centroid is produced,

it is combined with the recorded camera-heading information to compute a heading

that would have been correct when the centroid was computed. This heading is out

of date since it says how the camera should have pointed when data that produced

the current centroid was captured. However, it is the best information available, and

hence is specified as the current desired heading for the camera.

3.2.2 The PARC system

The tracking system constructed at Xerox PARC is diagrammed in Figure 3.2. Video

signal from the camera is passed to a digitizer mounted on the VME bus of a Sun-

4. Digitized images are shipped into the Connection Machine where optical flow is

computed, and segmentation and tracking occur. Centroids of tracked objects are

sent up from the Connection Machine to the Sun. The Sun converts the centroid

information into rotation commands that are transmitted to the Hero robot over a

serial line.

CHAPTER 3. ARCHITECTURE 41

16,384 Processor
Connection
Machine

Sun

Digitizer

Hero
2000

Robot

��
HH

@
@

@
@

@@R �
�

�
�

���

?

6

?

Video

Images Rotations

Images Centroids

Figure 3.2: Connection Machine camera pursuit system

CHAPTER 3. ARCHITECTURE 42

There are two noteworthy details related to the speed of the algorithm and the

operation of the Connection Machine. First, shipping images from digitizer memory

into the Connection Machine is fairly slow; it accounts for approximately one third

of the processing time.

Second, the more images that are processed at once on the Connection Machine,

the more efficient processing becomes. This economy of scale results from the fact

that a serial front-end processor (the Sun-4) sends instructions to the Connection

Machine. The resulting per-instruction overhead can be amortized by processing

multiple images simultaneously. The algorithm runs most efficiently processing 8 or

16 pairs of images at a time. However, at 15 frames per second, this entails latency

of more than one half or a whole second. Currently the system processes 4 pairs

of frames at a time. This causes latency of about a quarter of a second between

the time something happens in the world, and the time the tracking algorithm has

finished processing the image.

The Hero robot has a central pivoting joint that is used to rotate the camera. The

camera is mounted so that its center of projection of the camera is directly over the

pivoting joint to ensure that fairly uniform flow fields result from robot rotations as

discussed in Section 2.2.

3.2.3 The Stanford system

The camera pursuit system built at Stanford is depicted in Figure 3.3. The sec-

ond system is not massively parallel, but instead runs on five Intel i860 processors,

mounted on two boards within the VME cage of a Sun. The Intel processors run

at approximately 40 million instructions per second (MIPS), providing a total of

about 200 MIPS. The CM can perform orders of magnitude more operations per

second than 200 MIPS, yet the Stanford system only performs a little slower than

the PARC system (ten hertz versus 15 hertz) on slightly smaller images (128 × 114

versus 128× 128). The fact that the same computation can be performed with fewer

MIPS is accounted for by the elimination of most inter-processor communication, and

the differences between the techniques used for dynamic programming on serial and

SIMD machines.

CHAPTER 3. ARCHITECTURE 43

PUMA

�
��

@
@

@
@

@
@

@
@

@�
��

�
��

HH
��

?

Video

Digitizer Motorola 88k

@
@

@
@I

Arm Control

@
@

@
@

@@R

Images

�
�

�
�

���

Rotations

Sun

?

Images

6

Centroids

VX i860
Tracking, Segmentation

?

Images

6

Flow fields

MVX — 4 i860’s — Motion Computation

Figure 3.3: Intel i860 based camera pursuit system

CHAPTER 3. ARCHITECTURE 44

Again, video signal from the camera is passed into a digitizer on the VME bus of a

Sun. Digitized images are passed from the Sun to a VX board1 containing a single i860

processor. The VX divides the image into four slightly overlapping horizontal slices.

One slice is distributed to each of the four i860 processors on the MVX board. Each

processor on the MVX computes one fourth of an optical flow field. The flow field

is passed back to the VX where segmentation and tracking are performed. The VX

passes centroid information to the Sun. The Sun in turn, passes rotation information

to a Motorolla 88k processor that performs computation relating to controlling the

joint torques of the Puma arm.

A lot of time is devoted to shipping data between processors, yet the whole system

runs at about ten frames per second, on 128 × 114 images. Controlling a Puma arm

with five degrees of freedom is considerably more difficult than controlling a single

rotating joint on the Hero 2000. However, using Khatib’s COSMOS system [55], the

manipulator control problem is transparently specified in operational space so that no

effort need be expended on geometric or kinematic issues. Rotation is specified about

a single point in operational space, namely, the center of projection of the camera.

Figures 3.4-3.6 show a sequence of images captured while the pursuit system was

operating. The white line shows the outline of the tracked object.

1The two boards containing the i860 chips were originally designed by Sun as a graphics acceler-
ator. The boards are currently manufactured by a company called Vicom. One board, called a VX
has one i860 processor on it. The other board, an MVX has four i860’s on it.

CHAPTER 3. ARCHITECTURE 45

Frame 1 Frame 2 Frame 3 Frame 4

Frame 5 Frame 6 Frame 7 Frame 8

Frame 9 Frame 10 Frame 11 Frame 12

Frame 13 Frame 14 Frame 15 Frame 16

Frame 17 Frame 18 Frame 19 Frame 20

Figure 3.4: Camera pursuit sequence part 1

CHAPTER 3. ARCHITECTURE 46

Frame 21 Frame 22 Frame 23 Frame 24

Frame 25 Frame 26 Frame 27 Frame 28

Frame 29 Frame 30 Frame 31 Frame 32

Frame 33 Frame 34 Frame 35 Frame 36

Frame 37 Frame 38 Frame 39 Frame 40

Figure 3.5: Camera pursuit sequence part 2

CHAPTER 3. ARCHITECTURE 47

Frame 41 Frame 42 Frame 43 Frame 44

Frame 45 Frame 46 Frame 47 Frame 48

Frame 49 Frame 50 Frame 51 Frame 52

Frame 53 Frame 54 Frame 55 Frame 56

Frame 57 Frame 58 Frame 59 Frame 60

Figure 3.6: Camera pursuit sequence part 3

Chapter 4

Motion measurement

This chapter describes the algorithm used for computing optical flow fields from a

pair of images. As discussed in Section 2.3, if two images, I i and I i+1 are captured

at times t0 and t1 respectively, then the motion field M̃ i represents the motions that

occurred between t0 and t1. The purpose of the motion algorithm is to compute an

optical flow field M i that is an approximation to M̃ i given the two images I i and

I i+1.

The requirements for what the optical flow algorithm must be able to do arise

from both the tracking system as a whole, and the tracking algorithm itself. It must

function on the kinds of images and image sequences that the tracking system might

encounter in indoor or outdoor environments. It must produce optical flow fields that

are suitable for the segmentation and tracking algorithms. Finally, it must be suitable

for real-time implementation.

Generalizing over sets of images is a rash thing to do, however, the images captured

at ten to fifteen frames per second by the panning robot systems have tended to have

several common characteristics. Objects moving in the scene are non-rigid, and hence

tend to display multiple regions of distinct motion. Things in the field of view move

fairly slowly, but displacements are very often more than one pixel. Both objects in

the scene, and the camera itself tend to shift directions of motion rapidly. Since the

tracking system is intended for use in unstructured environments, images can come

from either indoor or outdoor scenes.

48

CHAPTER 4. MOTION MEASUREMENT 49

Algorithms for segmentation and tracking rely on the cross temporal behavior

of regions of the image. The behavior of regions is determined by the behavior of

individual pixels. The optical flow field must be dense; each pixel needs to have an

estimate as to where it has been displaced.

Optical flow fields do not need to be terribly precise approximations to motion

fields, since discretized motion displacements are used. Indeed, Verri and Poggio [98]

argue that the underlying evidence, the optical flow field associated with variation

in image brightness patterns, rarely agrees with the motion field. Although the flow

field does not need to be quantitatively precise, two qualitative properties must be

preserved. Where there is a discontinuity in the motion field, there ought to be a

discontinuity in the flow field somewhere nearby. Similarly, where there is a region

of relatively uniform displacement vectors in the motion field, the flow field ought to

consist of homogeneous regions of flow vectors.

Two general constraints on motion in the visible world make computing optical

flow possible. Motions in the world result in changing intensity patterns. Individual

estimates of motion can be made based on these changing patterns. Parts of objects

moving in the world tend to move coherently and hence result in a locally smooth

motion field. The coherence of motion supports the assumption of a locally smooth

flow field and allows individual motion estimates to be combined to achieve credible

measurements.

Making use of these two constraints, the optical flow algorithm has two steps:

an initial motion measurement step and a smoothing step. For each pixel p on the

first image, the initial motion measurement step determines a best match in the area

surrounding p on the second image. Since images are noisy, and since the initial

estimation step is not perfect, the second phase of the algorithm locally filters the

initial estimates to produce a better approximation to the motion field.

The output of any locally computed optical flow algorithm is likely to contain col-

liding flow vectors, i.e., multiple pixels that are mapped to the same pixel. In the case

of a receding object, such collisions make sense since part of an object that projects to

two pixels may shrink to one. More commonly, collisions arise from occlusion. Parts

of the segmentation and tracking algorithms are more simply defined if the optical

CHAPTER 4. MOTION MEASUREMENT 50

flow field is injective (has no collisions). In a procedure called rectification, an injec-

tive flow field can be generated by locally prioritizing the estimated displacement for

each pixel.

First, the initial motion measurement step is presented. The smoothing step is

discussed in Section 4.2. Following the description of the basic motion algorithm, the

rectification step is described. Section 4.4 presents two practical difficulties found

in images taken with a moving camera, along with partial solutions. Next, other

approaches to computing optical flow fields are laid out. Finally, the overall optical

flow algorithm is discussed.

4.1 Initial motion measurements

The task of the initial motion measurement phase is to determine for each pixel on one

image, without considering neighboring pixels’ opinions, the most likely corresponding

pixel on the next image. As input, the initial motion measurement algorithm takes

two images, I i and I i+1. As output, it produces a dense, multivalued flow field

M∗
i ∈ M∗.

The time interval between the two images is assumed to be quite small, and hence

things in the image are expected to travel only short distances. As movements are

small, the part of the world that corresponds to pixel p on image I i will appear within

a small radius of p on image I i+1. Thus, the most likely displacement for a pixel p

on image I i can be determined by searching for the most similar (least dissimilar)

pixel on Ii+1. The area that is explored for a best displacement is termed the search

window. Rather than attempting to determine the best displacement on the basis

of the gray-level of a single pixel, the best displacement is determined by matching

the gray-levels of a patch of pixels. This patch of pixels is known as the correlation

window. The measure of dissimilarity used for comparing patches pixels is the sum

of squared differences (SSD).

Both computational cost and the quality of the results demand that the search

window be limited in size. The cost of the search goes up with the square of the

search radius. Similarly, the chances of a spurious best match increase with the size

CHAPTER 4. MOTION MEASUREMENT 51

(-4,-1)

(-4,0)

(-4,1)

(-3,-1)

(-3,0)

(-3,1)

(-2,-2)

(-2,-1)

(-2,0)

(-2,1)

(-2,2)

(-1,-2)

(-1,-1)

(-1,0)

(-1,1)

(-1,2)

(0,-2)

(0,-1)

(0,0)

(0,1)

(0,2)

(1,-2)

(1,-1)

(1,0)

(1,1)

(1,2)

(2,-2)

(2,-1)

(2,0)

(2,1)

(2,2)

(3,-1)

(3,0)

(3,1)

(4,-1)

(4,0)

(4,1)

Figure 4.1: The search window used in the implemented systems

b

a

e

dc

Figure 4.2: The correlation window

of the search window. Hence, a small fixed search window, or set of displacements,

is determined. For a circular search window, the set of displacements is D =

{ d ∈ Z × Z | ‖d‖ < rv }, for rv a small integer. In practice, the search window is not

circular, but rather elliptical. Figure 4.1 depicts the set of 37 displacements used in

the implemented systems.

The correlation window used consists of five cells: the pixel and its four four-

connected neighboring pixels (see Figure 4.2). Given a pair of images I i and I i+1,

define the degree of mismatch for a pixel p ∈ P, and displacement d ∈ D to be

E(p, d) ≡
∑

‖δ‖≤1

(I i(p + δ) − I i+1(p + δ + d))2.

The result of the initial motion measurement phase, M∗ for each pixel p, is the set

CHAPTER 4. MOTION MEASUREMENT 52

of displacements that produce the minimal error term:

M∗(p) ≡ { d ∈ D | E(p, d) = min
d′∈D

E(p, d′) }.

It would be preferable for the initial estimate phase to produce a single valued

flow field, rather than a multivalued one, but since ties can occur, the result must be

multi-valued. In practice, a random minimal element or even an arbitrary minimal

element can be chosen for each pixel.

4.1.1 Justifying SSD correlation

Why use the sum of squared differences of intensities as a dissimilarity measure? It

is a common technique for the estimation of stereo and motion disparity, it is fairly

inexpensive to compute and has reasonable behavior in the presence of noise. One

way to think about a correlation window containing k cells is as if it were a point in

k-space. Then two pixels are more or less similar depending on the Euclidean distance

between them as characterized by their surrounding windows.

This view of SSD correlation is particularly attractive when thinking about noise

in image formation. A reasonable model of the differences between two images taken

of the same unchanging scene at different times, is that the second image will differ

from the first by some amount of Gaussian noise. When viewed as points in a k-

dimensional space, the points that result from changes induced by Gaussian noise

will cluster about the original point. The Euclidean distance between the new point

and the old point will provide a good gauge of the likelihood that one local area is

the result of Gaussian noise on the other local area.

Kass [52] suggests using multiple local representations of local image properties as

the basis for more robust matching. This approach, although promising, would be ex-

pensive to compute, and would compound difficulties at motion discontinuities. Local

image properties other than intensities tend to be aggregations of information from

the surrounding area. Aggregation of image information across motion discontinuities

results in measures that do not recur in subsequent images.

CHAPTER 4. MOTION MEASUREMENT 53

a b c

d e f

g h i

g d a

h e b

i f c

Figure 4.3: A correlation window before and after a −90◦ rotation

Burt et al. [23] examine several correlation measures other than SSD’s, includ-

ing cross-correlation and normalized cross-correlation, and the effects of varying cor-

relation window sizes. These researchers discount SSD correlation since it can be

drastically affected by overall changes in image intensity. However, given a suitably

fast frame rate such that changes in lighting are not significant, SSD correlation can

extract information both from the local texture and the local mean intensity.

4.1.2 Why this window size?

Several constraints bear on the choice of correlation window sizes. Camera-relative

rotation and discontinuities in the motion field argue for a small window. Balanced

against demands for a small window is the need for a measure with a reasonable

amount of discrimination.

To see that camera-relative rotation in a scene argues for a small correlation

window, note that what matters in correlation is getting the individual cells of the

window on one image to line up, or overlap with the appropriate cells on the second

image.

Given a grid with uniquely labeled cells, define the degree of overlap between the

grid and itself translated by up to one half a cell in the vertical and horizontal axes,

and rotated an arbitrary amount to be the fraction of overlap of identically labeled

cells. Figure 4.3 shows a grid, and the same grid rotated −90◦. With no rotation or

CHAPTER 4. MOTION MEASUREMENT 54

translation, the grid achieves a degree of overlap of 1 since each cell fully overlaps a

cell with the same label. Rotated −90◦, the grid achieves a maximal degree of overlap

of 1
9

since only one cell overlaps another with the same label.

Without rotations, no matter what size the SSD window, the worst degree of

overlap possible is 1
4

at displacement 〈.5, .5〉. Similarly, with a single-celled correlation

window, and arbitrary translation and rotation, the least possible degree of overlap

is 1
4
.

Consider the case of a rotation with no translation, and a large correlation window.

For a given rotation θ, cells further out from the center of rotation will traverse greater

distances. If the center of a cell shifts more than
√

2 pixels then it cannot possibly

overlap at all with its corresponding cell1. For a cell, the center of which is r pixels

away from the center of rotation, an angle θ = arcsin
√

2
2r

, will preclude any overlap with

the corresponding cell. Thus, given a fixed rotation θ, a larger correlation window will

have a proportionally smaller degree of overlap. If camera-relative rotations are likely,

the correlation window ought to be as small as possible. Burt et al. [23], studying the

effects of window size on correlation given image dilation, empirically conclude that

the correlation window should be small.

Discontinuities in the motion field arising from independently moving scene ele-

ments, or flexing objects also argue for small correlation windows. On the perimeter

of an object that is translating relative to a background, for a correlation window of

diameter dc, the degree of overlap is at best approximately dc

2
, because even when

object pixels from the two images line up perfectly, cells corresponding to the back-

ground all differ. The degree of overlap improves as the correlation window is moved

away from the perimeter of the object. As the correlation window increases in size,

there are more pixels where the correlation window overlaps the motion boundary,

and the worst case degree of overlap gets smaller. Researchers have attempted to

ameliorate the effects of motion boundaries on SSD correlation by examining the lo-

cal SSD surface [7, 15], but the methods for characterizing SSD surfaces and ways of

using these characterizations do not yet appear practical.

On the other hand, arguing for a large correlation window, there is a need for

1Two unit squares whose centers are separated by
√

2.

CHAPTER 4. MOTION MEASUREMENT 55

a certain degree of discrimination among pixels. Consider a single-celled correlation

window with eight-bit gray-levels. For a set of 37 displacements, on a random image,

the odds are approximately 9
64

that a pixel other than the correct one will have the

same gray-level. Taking into account noise, subpixel displacements, and the fact that

intensities tend to vary smoothly, the odds of there being an ambiguity, or worse, a

false best displacement, become even greater.

A small, 5 cell correlation window is used. It is intended as a good middle point

in the space of correlation windows. With respect to rotation, after a single celled

window, the 5 cell window is the best vertically and horizontally symmetric, pixel-

centered correlation window. The worst case overlap for a rotation of 180◦ and a

translation of 〈.5, .5〉 is 1
20

. At object boundaries of square objects, ignoring transla-

tions and rotations, the 5 cell window has a worst case degree of overlap of 4
5

except

at corners where it is 3
5
. Using the 5 cell correlation window there are 240 distinct

SSD patches dramatically reducing the odds of ambiguity. For displacement vectors

centered between pixels, a four cell window would be best.

Okutomi and Kanade [73] have developed methods for adaptively varying window

sizes to allow stable, precise estimation. They have analyzed the one-dimensional

case, and extended the analysis to the two-dimensional case of stereo. Neither one-

dimensional matching, nor stereo displacements involve rotation, and hence rotation

is not modeled. Adaptive sizing techniques also incur additional expense in that the

computation is no longer uniform across the image.

4.1.3 Limitations

SSD correlation with a fixed set of discrete displacements has several weaknesses. The

primary ones result from motions that are larger than the maximum motion detected,

or smaller than one pixel.

No matter what motion occurs, SSD correlation will always produce an answer,

namely, the displacement with the least degree of mismatch. In the case of an object

moving further than the largest measured displacement, correlation cannot produce

a correct answer. However, since objects rarely appear as uniform intensities, but

rather as increasing and decreasing intensity slopes, in the case of large motions,

CHAPTER 4. MOTION MEASUREMENT 56

SSD correlation generally produces the longest displacement vector that points in the

same direction as the correct displacement. Despite the correct patch not being in

the search window, the general ramp-like nature of images causes the patch in the

search window that is closest to the patch being sought to be the most similar.

Producing an answer that points in the right direction is better than a random an-

swer, but it leaves open the question of how to deal properly with large motions. One

cannot go on extending the local search window indefinitely, as each increase in size

also increases the ambiguity of the match. Researchers such as Burt [24], Glazer [39]

and Anandan [7] have proposed performing correlation using hierarchical structures

across scale in order to measure large motions. Such proposals are discussed in Sec-

tion 4.5. Assuming that computational costs can be handled, increasing the speed

of image capture appears to be a promising avenue. For this discrete approach to

computing motion, increasing the frame rate has the disadvantage that more motions

will appear as displacements of less than one pixel.

Projected motions that are smaller than one pixel pose a slightly different problem.

If an object is moving sufficiently slowly, such that its motion is always less than half a

pixel, the correct discretized displacement is always stationarity. Thus a sloth could

crawl past a computer that was making discrete motion measurements and never

register a non-zero displacement.

4.1.4 Complexity

Any algorithm for computing SSD correlation over a local search window must per-

form one difference and determine one squared term for each displacement in the

search window. In parallel, forming a squared difference for each displacement is

complicated by the need to get image data from neighboring processors. The parallel

computation can be efficiently performed at pixel p by making a local copy of the

gray-levels corresponding to the search window surrounding p on p
′

s processor. This

local copy can be formed using the dynamic programming techniques described in

Section 2.7, with ⊗ instantiated as concatenation. Accessing the right image data for

SSD correlation in parallel costs O(lg |D|) hypercube communications. Computing

squared differences for each displacement costs O(2|D|) operations per pixel both in

CHAPTER 4. MOTION MEASUREMENT 57

serial and parallel.

Shared results can be used in computing the sums of these squared differences.

For a square SSD template, local dynamic programming techniques apply. Matching

an unweighted, square SSD window across the image can be performed in serial,

in time independent of the window size. In parallel, the same computation can be

done in time dependent on the log of the correlation window size. However, the

template used is not square, and is very small. If the squared differences of the SSD

template are labeled a, b, c, d, e as in Figure 4.2, then the sum can be decomposed as

(a + b) + c + (d + e). Note that for one pixel, a + b is the same quantity as d + e for

another pixel one up and one to the left. Using these shared results, the sums for a

five pixel template at |D| displacements can be computed with O(3|D|) additions per

pixel. In parallel, this computation incurs three hypercube communications to bring

the various sums to the local processor. The final step of forming an initial estimate

involves finding the best displacements in time O(|D|). In summary, the complexity of

performing SSD correlation at |D| displacements with a five pixel correlation window

is:

Computation Communication

Phase Serial Parallel Hypercube

Initial measurement O(6|D|N2) O(6|D|) O(lg |D| + 3)

4.2 Motion smoothing

The results of the initial motion measurement step can be quite noisy. The second

half of the motion computation is a filtering step intended to remove spurious motion

estimates. Motion fields have the distinctive property that they vary smoothly in

regions of the imaging surface that correspond to the interior of objects, and are

discontinuous at the perimeters of independently moving objects.

Traditional filtering techniques such as mean filtering only make sense when the

data to be filtered varies continuously. At the edge of a translating object, taking the

mean of the neighboring displacement estimates would result in a strange displace-

ment half way between the displacement of the object and that of the background.

CHAPTER 4. MOTION MEASUREMENT 58

Many optical flow algorithms [6, 47] use relaxation to find an optimally smooth

flow field, or some form of least squares fit [54, 61] to enforce local smoothness.

However, enforcing smoothness across discontinuities in the motion field introduces

many displacement vectors that are only artifacts of the smoothing process. Spoerri

and Ullman [87] look at the problem of detecting discontinuities in the motion field

before attempting to find consistency. Their approach involves looking for bimodality

in histograms of initial motion measurements. The key observation in their algorithm

is that the modes in a histogram of local measurements indicate the predominant

local motions.

Because the underlying motion field can contain discontinuities the filtering op-

eration used is mode filtering. The result of mode filtering at each pixel is the most

popular displacement in the region surrounding the pixel. As input, mode filtering

takes an initial motion estimate M∗, and produces an optical flow field M , and a field

of modes V.

Formally, let rm denote the radius of the mode filter region. Define the votes, V

for a displacement d at a pixel p,

V (p, d) ≡ |{ 〈x, y〉 | |x| ≤ rm ∧ |y| ≤ rm ∧ d ∈ M∗(p + 〈x, y〉) }|.

By abuse of notation, the maximum number of votes for a pixel is denoted:

V (p) = max
d∈D

V (p, d).

A slight complication arises from the fact that there may not be a unique mode

of a distribution. The problem can be side-stepped by choosing one of the most

popular displacements at random. In practice, ties occur rarely. The result of the

mode filtering step is the displacement with the most votes.

M(p) ≡ sup
λd·V (p,d)

D

Or equivalently, for an optical flow field mapping pixels to pixels,

M(p) ≡ p + sup
λd·V (p,d)

D.

CHAPTER 4. MOTION MEASUREMENT 59

Object Background

p

rm

rm

?

6

?

6

Figure 4.4: Mode filtering pixel p

Mode filtering does not appear to be a commonly used technique. Coleman et

al. [27] appear to have named the technique and used it for removing very small regions

of distinct gray-levels in images prior to attempting segmentation. Davies [30, 31]

suggests using mode filtering for gray-level image enhancement.

4.2.1 Limitations

Mode filtering has several weaknesses resulting from its expectation of finding coher-

ence across a local area. When mode filtering across a discontinuity, odd effects can

occur. Since these effects only become more complicated when the underlying data

consists of motion estimates, the case of mode filtering a binary image is considered.

The two valued image data is assumed to be noise free. If the underlying data is ran-

domly perturbed, approximately the same distributions of mode filter votes will arise.

If on the other hand, the underlying input data are skewed in some way, mode filter-

ing may well mismeasure. See Section 4.4.1 for an example of particularly pernicious

skew.

Mode filtering has distorting properties at corners. Figure 4.4 depicts a square

CHAPTER 4. MOTION MEASUREMENT 60

Object Background

p

?

6
j

?

6
rm

� -rm � -i

Figure 4.5: Position of pixel p

object on a distinctly labeled background. The corner pixel p of the square object

must be misclassified as part of the background by mode filtering; the mode filter

region centered about p, indicated by the dashed line, covers only (rm + 1)2 pixels

of the square object, while the mode filter region as a whole contains (rm + 1 + rm)2

pixels. For any radius rm ≥ 1, (rm + 1 + rm)2 > (rm + 1)2 and so the most popular

labeling at p must be that of the background region.

The corner pixel p is not the only misclassified pixel. The number of pixels that

get misclassified near the corner of a square object is a function of the radius of the

mode filter. Whether an individual pixel near the corner of an object gets misclassified

depends on its position relative to the corner. The corner relative position of a pixel

can be indicated by how far it is from the edges of the square object. In Figure 4.5 the

distance from the center pixel of the mode filter to the right edge of the square object

is labeled i, and the distance from the center pixel of the mode filter to the bottom of

the square object is labeled j. The area of the whole mode filter is (2rm + 1)2. From

the figure, it is easy to see that the area of the part of the mode filter that overlaps

the square object is (rm + i)(rm + j). A pixel at position 〈i, j〉 for 1 ≤ i, j ≤ rm + 1 is

CHAPTER 4. MOTION MEASUREMENT 61

misclassified when the area of overlap between the mode filter region and the square

object is less than half the area of the mode filter region, i.e., when

(rm + i)(rm + j) <
1

2
(2rm + 1)2.

The number of pixels erroneously classified when mode filtering with radius rm at the

corner of a square object, written e(rm), is the cardinality of the set of such pixels.

e(rm) ≡ |{ 〈i, j〉 | 1 ≤ i, j ≤ rm + 1 ∧ (rm + i)(rm + j) <
1

2
(2rm + 1)2 }|

Rewriting this in terms of j,

e(rm) = |{ 〈i, j〉 | 1 ≤ i, j ≤ rm + 1 ∧ j <
1

2

(2rm + 1)2

rm + i
− rm }|.

A continuous approximation to the cardinality can be computed by finding the area

under the curve, for 1 ≤ x ≤ rm + 1 of

y =
1

2

(2rm + 1)2

rm + x
− rm.

This area can be found by integration.

e(rm) ≈
∫ rm+1

1

1

2

(2rm + 1)2

rm + x
− rmdx

By simplification and change of variable, the integral becomes

e(rm) ≈ 1

2
(2rm + 1)2

∫ 2rm+1

rm+1

1

z
dz −

∫ rm+1

1
rmdx.

Using the integral of 1
z
, a closed form approximation can be found.

e(rm) ≈ 1

2
(2rm + 1)2[ln(2rm + 1) − ln(rm + 1)] − r2

m

For the mode filter used in practice, where rm = 3, the 5 pixels shown in Figure 4.6

are misclassified (the approximation yields 4.7). For rm = 7, 23 pixels are actually

misclassified, while the approximation yields 21.7.

Another shortcoming of mode filtering, even assuming perfect initial estimates, is

that mode filtering will hide sufficiently small objects. Consider a square object of

CHAPTER 4. MOTION MEASUREMENT 62

× × ×
×
×

Figure 4.6: The five misclassified pixels for rm = 3

size k × k. If k2 < 2rm + 1 no trace of the object will appear in the mode filtered

result. Thus for the mode filter radius of three used in practice, an object that is

smaller than five by five will disappear.

If the results of the initial motion measurement phase were not discrete, but

instead each pixel had a precise floating point estimate of its motion, the applicability

of mode filtering comes into question. There are standard methods for finding the

mode of real-valued data [77], but it is an open issue as to whether these techniques

would be feasible for efficient implementation.

4.2.2 Complexity

Mode filtering involves two steps: histogramming the initial measurements in the local

region, and finding the mode of this histogram. For simplicity, rather than speaking

in terms of the mode filter radius rm, the mode filter diameter dm, is used in the

analysis. In serial, dm = 2rm + 1. In parallel, since a a binary recursive composition

of partial sums is desired, dm = 2⌈lg(2rm+1)⌉.

Finding the mode is straightforward. If one ignores the possibility of ties, and is

willing to choose the first or last most popular displacement, computing the mode is

a one-pass maximum computation involving |D| − 1 comparisons per pixel. If some

sort of randomization is included, the cost goes up. It can require two passes over

the histogram, once to find the maximum number of votes and count the number of

pixels having this number of votes, and once to select the random element.

The output of the initial motion estimate computation M∗(p) can be represented

as a vector of ones and zeros of length |D|. An entry in such a vector will be one

CHAPTER 4. MOTION MEASUREMENT 63

if the corresponding displacement is a displacement with the least SSD score, zero

otherwise. Viewing initial estimates as vectors makes computing the histogram of

initial estimates amenable to the dynamic programming techniques introduced in

Section 2.7. The group operation ⊗ is, in this case, vector addition. The width w

and height h are both dm.

For the parallel case, as predicted by the analysis in Section 2.7, generating local

histograms of initial estimates can be performed with O(2 lg dm) vector additions and

O(2 lg dm) hypercube communications. Since each vector is of length |D|, computing

local histograms costs O(2 lg dm|D|) additions. Combined with the |D| − 1 compar-

ison operations, mode filtering costs O((2 lg dm + 1)|D| − 1) operations on a SIMD

machine.

The analysis in Section 2.7 would suggest that computing the motion histograms

in serial would cost four vector additions per pixel, where each vector addition would

involve |D| scalar additions. However, by choosing exactly one displacement in the

initial estimate step this figure can be reduced. Choosing one displacement for each

pixel allows the individual results of the initial estimate phase to be encoded as indices

rather than |D| element vectors. As noted in Appendix B, forming the aggregation in

a matrix F for a single pixel requires the application of ⊗ and ⊗−1 to a single element

of F each. Since these single elements of F can be encoded as indices, the operations

on single elements of F can be performed with one scalar addition per element, rather

than |D| scalar additions. Thus the local histogram can be generated in O(2|D| + 2)

scalar additions per pixel. The whole mode filtering step including finding the mode

can be performed in O(3|D| + 1) operations per pixel on a serial computer.

The following table summarizes the complexity of mode filtering in serial and

parallel.

Computation Communication

Phase Serial Parallel Hypercube

Mode filter O((3|D| + 1)N2) O((2 lg dm + 1)|D| − 1) O(2 lg dm|D|)

CHAPTER 4. MOTION MEASUREMENT 64

4.3 Rectifying optical flow fields

The motion computation results in a displacement vector for every pixel on the image.

For some pixels such as pixels that have been occluded, having a motion estimate

makes little sense. There is no information available as to where a pixel that has

been occluded has moved. A consequence of assigning a displacement vector to each

pixel is that in general, the optical flow field may map several pixels to the same

point p; the pixels collide. Both the segmentation and tracking algorithms can be

simplified if the optical flow field is injective. Since some of the displacement vectors

that map to the same point are artifacts resulting from occlusion, and since injective

optical flow fields simplify the computation, it is desirable to rectify the optical flow

field M and produce an injective flow field M .

If the optical flow field is to be made injective, obviously only one pixel can be

allowed to map to the point p. A reasonable choice for which pixel should map to p

would be the pixel with the most credible motion estimate. In the case of a mode

filtered motion computation, the number of votes V (p) (see Section 4.2) that the

winning displacement received at pixel p is a good estimator of the credibility of this

motion estimate. Thus one can produce an injective optical flow field by ensuring

that for each pixel p′ in the range of the flow field, of the pixels that originally map

to p′ only the pixel p with the highest number of votes maps to p′.

To see that the number of votes the winning displacement received ought to be

a useful measure of credibility near occlusion boundaries, consider pixels that are

occluded and those around them. Occluded pixels will tend to have relatively ran-

dom initial estimates, since there is no correct answer. Pixels on either side of the

occluded region will have much more consistent estimates. Thus the mode filtering

region over an occluded pixel will tend to be composed of a set of random estimates

and two or more neighboring distributions. The number of votes for the most pop-

ular displacement at occluded pixels will tend to be lower than the number of votes

at neighboring unoccluded pixels. Since rectification could be performed with any

credibility estimate, let L : P −→ N be a function that maps a pixel to a natural

number indicating how likely its motion estimate is. In the current implementation,

CHAPTER 4. MOTION MEASUREMENT 65

L is instantiated by the vote count V from the mode filtering step.

The rectified inverse of M , M
−1

(p) can be defined as the pixel p′ that M maps to

p with the highest credibility.

M
−1

(p) ≡ sup
L

{ p′ | M(p′) = p }

Using this definition of an injective inverse to the optical flow field, an injective

rectified optical flow field M : P −→ P ∪ {⊥} is easily defined.

M(p) ≡

⊥ if ¬∃p′ M
−1

(p′) = p

p′ where M
−1

(p′) = p, otherwise.

In serial, rectification involves two address computations and at most one compar-

ison per pixel. In parallel, rectification involves two non-hypercube communications

per pixel.

Computation Communication

Phase Serial Parallel Hypercube Non-hypercube

Rectification O(3N2) — — O(2)

4.4 Complications and improvements

Several practical difficulties arise when computing motion from real image sequences.

This section describes these difficulties and the solutions that have been used to

mitigate their effects.

4.4.1 Motion aliasing

Straight, high contrast elements of a scene can result in highly textured cyclic image

patterns that are classed as a form of spatial aliasing. When these straight, high con-

trast edges project onto the imaging surface at certain angles, small camera motions

can result in pronounced apparent shifts of texture along these edges. Often, such

high contrast elements occur in regions of low texture; the illusory texture shifts can

present more compelling evidence of motion than actual camera-relative motion. The

CHAPTER 4. MOTION MEASUREMENT 66

Figure 4.7: A straight, high contrast edge with slope −1 : 8

Figure 4.8: The high contrast edge after sampling

initial motion measurement phase of the motion algorithm may detect the illusory

motion. Since the apparent shift can occur uniformly along a straight line, most of

the estimates along the line will observe this illusion. This mass hallucination can

influence the mode filtering step and result in lines of illusory motion in the resulting

flow field. This problem is referred to as the motion aliasing problem. First, the

formation of these spatial aliasing patterns is discussed. Next, the conditions under

which the illusory motions occur are described. Finally, an explanation of how these

effects interfere with segmentation and tracking and a description of the solution used

to sidestep the problem are presented.

Spatial aliasing

Consider the situation shown in Figure 4.7 of a high contrast diagonal edge of down-

ward slope, one in eight. Figure 4.8 shows the same edge after it has been sampled.

Notice that the pattern of gray-levels along the edge is cyclic with a periodicity of

approximately 8. Without loss of generality, only slopes between 0 and 1 (45◦) will

CHAPTER 4. MOTION MEASUREMENT 67

Figure 4.9: The high contrast edge shifted down and sampled.

be considered. The periodicity of the cyclic step function that corresponds to a line

with a slope of the form 1 : j for integers j, is j. For other angles θ, the apparent

periodicity is approximated by cot θ. Rosenfeld and Kak [81] touch on this form of

spatial aliasing, and Legault [57] relates it to the display of images.

Spatial aliasing in motion

The effects of small camera motions on patterns of spatial aliasing are considerable.

Translations can have dramatic effects. Consider shifting the edge in Figure 4.7 down

by one sampling pixel. As the edge moves down, the cyclic pattern of the sampled

image shifts along the edge. Figure 4.9 shows the result of sampling Figure 4.7 shifted

down by less than one half pixel.

These shifting patterns of spatial aliasing can strongly effect the motion computa-

tion. If the high contrast edge has a fairly steep slope relative to a line perpendicular

to the direction of movement (i.e., short periodicity), then any camera motion is likely

to produce a measurable shift in aliasing pattern. If the slope is say one in six, then

a camera movement can shift the pattern by three pixels in either direction along the

high contrast edge. SSD correlation will likely find a best match displaced along the

high contrast edge in accordance with the shift in pattern.

If the high contrast edge has a small slope relative to the direction of camera

movement, and some small motion (e.g., jitter) perpendicular to the direction of

camera movement occurs, measurable pattern shifts can also occur. Here the period

of the pattern is large, but small camera motion can result in shifts along the spatial

aliasing pattern that can be detected in low-texture regions.

CHAPTER 4. MOTION MEASUREMENT 68

Motion aliasing ameliorated

The problem of illusory motions resulting from shifting spatial aliasing has not been

solved. It is a particularly difficult problem in that once spatial aliasing is intro-

duced into the image, there is no way to distinguish it from real data. An approach

that greatly reduces the problem involves detecting high contrast linear features and

suppressing SSD estimates in those regions. High contrast edges are detected using

the zero-crossings of the image convolved with a Laplacian where σ = 1. Linearity

is detected when the majority of pixels in a seven pixel line are zero-crossing pix-

els. SSD estimates are suppressed in regions showing linear features by zeroing their

contribution to the mode filtering step.

4.4.2 Stationary bias

A problem that has occurred in practice is a tendency to measure stationarity when

the camera is actually rotating. Two common, but unmodeled factors cause this phe-

nomenon: glare and dirt on the camera lens. This illusion is easier to deal with than

motion aliasing in that the resulting bias is for a single displacement, i.e., stationarity.

Presumably such lens effects ought to result in some fairly constant bias in the

SSD scores. By rotating the camera in front of a low texture, stationary scene, it is

possible to determine both the actual pixel displacement, and pixels that are detecting

illusory stationarity. At pixels that mistakenly choose the stationary motion, one can

compare the stationary SSD score with the SSD score of the actual displacement.

Empirically, the difference in scores hovers around 1. Thus, simply introducing a weak

anti-stationarity bias by incrementing the SSD score for the stationary displacement

by 1 tends to alleviate this effect.

4.5 Related work

All optical flow algorithms share the goal of determining the motion of scene elements.

There have been several comparisons and critiques of these optical flow algorithms

that cover many of the important points of similarity and difference between the

CHAPTER 4. MOTION MEASUREMENT 69

various approaches to determining scene motion [14, 59, 85]. This section mentions

many approaches to computing optical flow, but emphasizes their suitability for the

tracking system.

The issues that determine an algorithm’s suitability for optical flow-based seg-

mentation and tracking were mentioned at the beginning of the chapter:

• Must produce a dense flow field.

• Must handle general indoor and outdoor scenes.

• Must handle multi-pixel displacements.

• Must handle spatially non-uniform motions.

• Must handle rapid changes in motion direction.

• Flow fields must agree with motion fields at discontinuities.

• Flow field must be homogeneous where motion field is homogeneous.

• Must be computationally cheap.

Most optical flow algorithms, including the one described in this chapter have

two phases: a motion measurement phase and a smoothing phase. The discussion

of approaches shares this bipartite structure with the flow algorithms. A discussion

of techniques for making initial motion estimates is followed by an examination of

various methods for applying smoothness constraints to flow fields. Pyramid schemes

for computing optical flow are discussed following the analysis of motion measurement

and smoothing algorithms.

4.5.1 Motion estimation

The motion estimation phases of optical flow algorithms fall into three classes: lo-

cal matching, gradient-based techniques and techniques using spatiotemporal filters.

Local matching techniques tend to produce individual displacement vectors at each

CHAPTER 4. MOTION MEASUREMENT 70

point, or sets of displacement vectors combined with evaluation scores. Gradient-

based techniques usually produce estimates of the component of the local velocity

that lies parallel to the local intensity gradient. Spatiotemporal filter algorithms

produce distributions of velocities or component velocities.

Local matching

Perhaps the earliest techniques used for measurement of image motion involve local

matching. Local matching approaches find the displacement that produces the best

fit according to some similarity measure between one image and the next. Leese et

al. [56] and Smith and Phillips [86] used cross-correlation of large image patches on

satellite imagery for detecting cloud motion.

A theme that has been recurrent in discussions of matching is that “it is com-

putationally impractical to estimate matches for a large number of points” [54, P.

229]. To avoid matching at many points in the image, Moravec [66] and Barnard

and Thompson [13] used an interest operator to pick out distinctive points as good

candidates for matching.

Several authors [7, 24, 66] have proposed using a coarse to fine, or pyramid struc-

ture to reduce the cost of matching approaches. Such methods are described below

in Section 4.5.3.

Nishihara [71] uses the sign of the Laplacian of images as the basis for matching.

For pairs of boolean images, SSD correlation can be performed by counting pixels in

the correlation window that are mapped to one by exclusive-or. A large correlation

window is used to compensate for the low discriminability of boolean images.

For noisy images, or imagery in which there is little spatial and temporal smooth-

ness, local matching is probably the motion estimation technique of choice.

Gradient-based motion

Gradient-based optical flow algorithms [33, 39, 47] tend to assume a smooth spa-

tial intensity surface and that overall image intensities remain constant across time.

The spatial and temporal derivatives of images are used to estimate velocity in the

direction of the spatial intensity gradient. First-order derivatives of a single pixel

CHAPTER 4. MOTION MEASUREMENT 71

only determine a component velocity, or constraint line on possible motion vectors.

The techniques used to combine individual constraint lines are discussed as forms of

smoothing.

Nagel [69] makes use of constraints on the second derivatives of image intensity

to determine unique velocity vectors at corner-like points in the image. Hildreth [43]

measures motion normal at zero crossing edges of the Laplacian of the Gaussian.

The difficulties of determining image derivatives from sampled data mean that

input data must be smoothed over a fairly large region. The initial step of most

gradient-based algorithms involves smoothing the input images with a Gaussian filter

to minimize the effects of noise. When performing numerical differentiation large

regions of support in space and time are used since differentiation amplifies noise and

is susceptible to local effects. This blurring of image data from regions of distinct

velocities tends to produce very poor estimates of normal displacement in the vicinity

of discontinuities in the spatiotemporal motion field.

Kearney et al. [54] analyze gradient-based flow methods and cite three classes of

difficulty for such methods, homogeneous regions in which image gradient is poorly

defined, regions of high texture, and regions with motion discontinuities where the

temporal gradient is hard to measure. Little and Verri [59] emphasize the errors that

arise from the necessary initial smoothing step.

From the point of view of the tracking and segmentation algorithms, weaknesses

of gradient-based motion estimates include poor behavior at motion discontinuities

and in highly textured regions. The problems at motion discontinuities would tend to

be exacerbated by the rapid changes in camera and object motion. Gradient-based

approaches often produce poor results for displacements of more than one or two

pixels.

Spatiotemporal filter-based motion

The use of spatiotemporal, velocity-tuned linear filters originated from studies of

human motion perception [1, 42]. The basic intuition behind these approaches is

that image motion can be determined from orientation in space-time. A standard

example involves an object translating over time. In a 3-D, space-time volume, the

CHAPTER 4. MOTION MEASUREMENT 72

object appears as a ramp. The slope of the ramp with respect to time is tied to

the velocity of the object, while the direction of the slope indicates the direction of

motion.

Heeger [42] uses 12 distinct spatiotemporal filters tuned to different spatial orien-

tations. The output of his initial motion estimation step is a collection of energies

associated with the 12 filters.

Fleet and Jepson [34] use phase information in the output of a collection of spa-

tiotemporal filters to compute component velocities. Component velocities are com-

puted based on the gradient at surfaces of constant phase.

Barron et al. [14] show very promising results from Fleet and Jepson’s phase-

based algorithm. However, the motion sequences used appear to demonstrate great

temporal smoothness in the motion field. The use of spatiotemporal filters requires

significant spatiotemporal support. Many of the image sequences that the tracking

system deals with involve rapid shifts in motion direction that would tend to corrupt

the outputs of temporal filters.

4.5.2 Motion smoothing

Motion smoothing is motivated by the fact that individual initial motion measure-

ments may be poor, or even completely ambiguous in the case of component velocities.

Motion smoothing is justified by the observation that the motion field tends to be

locally smooth except at regions corresponding to disparately moving objects.

Motion smoothing algorithms attempt to find a consistent interpretation to ini-

tial motion measurements, either locally or globally. When the motion field is dis-

continuous, motion smoothing algorithms tend to attempt to find consistency among

measurements that represent distinct motions.

Local smoothing

Lucas and Kanade [61] and more recently many others [34, 84] make use of the fact

that gathering together many component velocities in a local area overdetermines the

local displacement. A least squares fit of the local constraints is used to determine

CHAPTER 4. MOTION MEASUREMENT 73

the best local displacement.

Heeger [42] smoothes the outputs of his spatiotemporal filters with a Gaussian

filter and then applies a least squares technique to determine a best local displacement.

In regions of images with uniform gradient, collections of local component veloc-

ities may still not determine a unique displacement. At discontinuities in motion

fields, least squares techniques have an effect similar to averaging the distinct veloci-

ties. Thus, spurious displacements are introduced to smooth the gap between regions

of distinct motion.

Another approach to local motion smoothing is voting. The idea of voting is that

all of the pixels in the local area cast votes expressing their opinions about possible

displacements. The mode filtering technique described in this chapter can be thought

of as unweighted local voting. If the initial motion estimation stage produces multiple

displacements in cases of ties, the voting procedure is a single vote one, otherwise it

is a multiple vote scheme.

Little et al. [20, 58] describe an optical flow algorithm based on weighted, multiple

vote, local voting. In their approach each pixel determines an estimate of how likely

each displacement is. The pixel then votes this entire vector of preferences in the form

of multiple, weighted votes. The filtered estimate at each pixel is the displacement

with the highest sum of weighted votes. Although their weighted voting scheme

allows any match evaluation function, squared differences of intensity is the principal

evaluation function used in their experiments.

When squared differences are used as the local dissimilarity estimation function,

the scheme of Little et al. looks very much like the initial motion estimation phase of

the algorithm described in this chapter. Their algorithm determines the displacement

with the least sum of squared differences at each pixel. As discussed in Section 4.1,

using a large correlation window has several drawbacks. Near motion discontinuities,

and in the case of rotation, using a large correlation window can preclude finding the

correct displacement. Mode filtering initial measurements based on a small correlation

window gathers support from a larger region, but avoids some of the difficulties of a

large correlation window.

CHAPTER 4. MOTION MEASUREMENT 74

Global smoothing

Global smoothing attempts to find a consistent interpretation for all motion estimates

made across the image. The principle argument in favor of global smoothing is that

it allows motions to be computed in regions that contain little or no local evidence

about motion. Arguments against global smoothing include the arbitrary propagation

of the effects of discontinuities in the motion field, and the significant communication

required to propagate global constraints in massively parallel implementation.

Barnard and Thompson [13] perform iterative optimization on an initial network

of likelihoods for potential matches between initially detected high interest points.

The optimization attempts to find a maximally consistent interpretation of matches

between two images.

Horn and Schunk [47] and others [43, 69] combine a constraint on the smoothness

of the flow field with the constraints from the spatial and temporal derivatives. These

constraints are formulated as a functional that can be iteratively optimized to find a

flow field that is maximally consistent with both local component velocities and the

global smoothness constraint. Anandan [7, 6] applies a global smoothness constraint

to initial measurements determined by SSD correlation.

Global smoothing can be quite expensive, since it involves many iterations con-

sisting of communication followed by local arithmetic. Horn and Schunk’s algorithm,

for example, requires approximately 20 arithmetic operations and 8 hypercube com-

munications per pixel on each iteration. Results from the algorithm are often shown

after 50 or more iterations.

4.5.3 Pyramid schemes

Many researchers have proposed using a multiscale representation to get around the

problem of displacements that are too large for a gradient-based flow algorithm, or

too expensive for a correlation-based algorithm. A hierarchy of band-pass or low-

pass filtered, or even intensity averaged images is formed. Since lower frequency

information can be sampled less often, resolution is reduced at each level.

Moravec [66],and Lucas and Kanade [61] attempt to determine one displacement in

CHAPTER 4. MOTION MEASUREMENT 75

a coarse-to-fine procedure. A displacement is determined at the lowest frequency level,

or smallest image using correlation (in the case of Moravec) or a gradient computation

(in the case of Lucas and Kanade). The resulting displacement picks out a small area

on the next higher frequency level in which to determine a more precise displacement.

The process is repeated until the highest resolution level is reached.

If one assumes that there is one predominant displacement that is to be detected

at a point, this coarse to fine processing makes sense both from the point of view

of the accuracy of the results and from the standpoint of computational complexity.

Attempting to measure large displacements of small scale features can produce very

bad estimates due to aliasing. Coarse to fine analysis can avoid these effects by

measuring small motions at each scale. The savings in computational complexity are

clearest in the case of local matching. If the search window for local search is k × k,

then evaluations must be made at k2 points. If a coarse to fine strategy is followed, 4

or 9 points can be evaluated at lg k levels, reducing the computation from k2 to lg k.

Burt et al. [24] and Heeger [42] generalize the approach to full optical flow com-

putation but do not use a coarse to fine processing order. Instead, the output of their

algorithms is a set of optical flow fields, one for each level of the multiscale image

structure. Burt justifies this approach with the argument that “velocity estimates

for rapidly moving objects need not be as accurate as estimates for slowly moving

objects” [24, P. 246].

Glazer [39] and Anandan [7, 6] use a coarse to fine approach for processing a

hierarchical multiscale image structure to generate full optical flow fields. At the

coarsest level, a displacement in a 3 by 3 region is determined for each pixel. At

each subsequent level of the hierarchy, for each pixel the estimate made for the pixel’s

parent at the coarser level is used to select a local matching region.

These approaches suffer from poor localization of motion discontinuities, and min-

imal computational savings due to lack of uniform processing. The difficulties will be

described in the context of Anandan’s framework.

The problem of poor localization can be seen by considering a pixel at the coarsest

level that is centered on (or even near) a motion discontinuity at the finest level.

The initial motion estimation step will determine two velocities in the neighborhood.

CHAPTER 4. MOTION MEASUREMENT 76

Anandan’s algorithm uses global smoothing at each level, thus the result at the top

level will be a displacement somewhere between the two actual displacements in

the vicinity. At the next lower level, the search window for some pixels may not

include the correct displacement. Anandan’s algorithm uses an overlapped pyramid

projection scheme [22] to attenuate the effects of motion discontinuities. However, this

scheme in which each pixel at a lower level can receive four displacements from above,

does not solve the problem. It can still be the case that the correct displacement is not

one of the four passed down from above. The pervasiveness of the problem can be seen

by considering that the 5× 5 SSD correlation window and the global smoothing step

at the coarsest level will tend to distort motion estimates at motion discontinuities.

These same distortions can be magnified and augmented at each descending level of

the processing hierarchy.

The computational savings of pyramid approaches are minimized by the over-

lapped pyramid projection scheme and the non-uniformity of the computation. Since

the search windows at a level are generated by local warping, the dynamic program-

ming techniques described in Section 2.7 cannot be used for the SSD correlation step

and the full cost of the 5 × 5 correlation window must be born.

The intuition that motion should be measured across scale is well motivated;

however, it is still unclear how to combine measures made at different scales to provide

accurate information in scenes containing non-uniform motion.

4.6 Conclusion

The optical flow algorithm described in this chapter performs unweighted SSD corre-

lation matching, mode filtering and rectification for every pixel on the image. Thus it

produces a dense optical flow field. Figures 4.10– 4.12 show the various stages of the

optical flow algorithm. Figure 4.10 shows two successive images taken of a swinging

ceramic mug. The mug is swinging to the left. Figure 4.11 shows needle diagrams of

the output of three stages of the flow algorithm. The needle diagram in the upper

left shows the output of the SSD correlation phase of the algorithm. Considering

the stationary background, it can be seen that many pixels have erroneous motion

CHAPTER 4. MOTION MEASUREMENT 77

Figure 4.10: Two images of a swinging mug

estimates. The needle diagram in the upper right shows the result of mode filtering

the initial estimates. The lower needle diagram shows the result of rectifying the

mode filtered motion estimates. Solid ‘x’s indicate pixels that have been mapped to

⊥. Figure 4.12 shows the effects of rectification. The left hand side of the figure

shows discontinuities in the flow field generated by mode filtering. Notice that the

white line on the left side of the mug is quite far from the mug itself. The right side

of the figure shows discontinuities in the rectified flow field. Notice that a region of

pixels on the left side of the mug have now been labeled with ⊥. This region on the

left side of the mug is part of a region that is occluded in the next frame.

4.6.1 Discussion

Performing initial motion estimation with SSD correlation does not depend on a

smooth spatial intensity gradient, so is suitable for highly textured natural objects

and outdoor environments. Local correlation does not rely on local derivatives. Not

depending on local derivatives, but instead actually matching local patches makes it

possible to reliably measure discretized, multi-pixel displacements.

Not having to compute local derivatives obviates the need to perform temporal

CHAPTER 4. MOTION MEASUREMENT 78

Initial flow field Mode filtered flow field

Rectified flow field

Figure 4.11: Three stages of optical flow computation

CHAPTER 4. MOTION MEASUREMENT 79

Discontinuities in filtered result Discontinuities in rectified result

Figure 4.12: The effects of rectification

convolutions that would degrade in the presence of rapid changes in motion direction.

Similarly, no initial spatial smoothing needs to be done, meaning that information is

not initially smeared across motion discontinuities.

Mode filtering is well suited for multiple non-uniform motions, since it does not

average measures from opposite sides of motion field discontinuities. This discrete,

step-edge property of mode filtering means that flow fields tend to agree with motion

fields at discontinuities. Although mode filtering introduces distorting effects at cor-

ners, the effects are probably less pernicious than the effects of averaging techniques

used in other algorithms.

Similarly, since mode filtering does not introduce, or attempt to measure, frac-

tional displacements, regions of the motion field that are homogeneous tend to result

in homogeneous regions in the flow field.

CHAPTER 4. MOTION MEASUREMENT 80

4.6.2 Complexity

The optical flow algorithm described in this chapter is cheap enough to be computed

on images that are 128×128 at more than 15 cycles per second on four i860 processors

with a clock speed of 20 megahertz. The optical flow computation for one pixel takes

about 300 instructions. The complexity of computing a flow field for a pair of images

is summarized below.

Computation:

Phase Serial Parallel

Initial estimate O(6|D|N2) O(6|D|)
Mode filter O((3|D| + 1)N2) O((2 lg dm + 1)|D| − 1)

Rectification O(3N2) —

Total O((9|D| + 5)N2) O((2 lg dm + 7)|D|)

Communication:
Phase Hypercube Non-hypercube

Initial estimate O(lg |D| + 3) —

Mode filter O(2 lg dm|D|) —

Rectification — O(2)

Total O(lg |D| + lg dm|D| + 3) O(2)

Chapter 5

Motion Segmentation

This chapter presents the algorithm for picking out the moving objects that are to be

tracked. The task of splitting up an image into subregions or segments is known as

segmentation. Without a purpose in mind, the reasons for segmenting and the way in

which segmentation should be done are nebulous. To see the fundamental nature of

the problem, consider the following excerpt from a 1985 image segmentation survey

from Computer Vision, Graphics, and Image Processing:

What should a good image segmentation be? Regions of an image

segmentation should be uniform and homogeneous with respect to some

characteristic such as tone or texture. Region interiors should be simple

and without many small holes. Adjacent regions of a segmentation should

have significantly different values with respect to the characteristic on

which they are uniform. Boundaries of each segment should be simple,

not ragged and must be spatially accurate [41].

Picking out independently moving objects on the basis of their motion is a more

circumscribed task. The intuition behind motion segmentation is that motion mea-

surements in a region corresponding to a moving object differ from those of the

background.

Much early image segmentation work was done with histograms [72]. In histogram-

based segmentation, the image intensities (or other measures such as texture) of all

81

CHAPTER 5. MOTION SEGMENTATION 82

pixels in the image (or in a subregion of an image) are plotted on a histogram. If

one is lucky and an object of interest differs in the histogrammed modality from the

background, a distinct peak corresponding to the object will appear in the histogram.

The pixels corresponding to the object can then be picked out based on the fact that

they exhibit one of the values that formed the selected peak. This approach of

histogramming static image properties such as intensity or texture suffers from the

difficulty that such properties do not necessarily distinguish the objects in the scene;

i.e., there may be no partitioning of the histogram that picks out an object. In terms

of survival, any predator or prey of a system that uses gray-level histogramming need

only sport a range of gray-levels to avoid detection.

The approach used for picking out moving objects is based on histogramming

motion vectors. The idea is that since there will be a motion vector associated

with each pixel in the image, these motion vectors, like other modalities, can be

histogrammed, and a moving object can be detected as a peak in the histogram.

However, not all of a non-rigid object may move at once. Fields of composite motions,

or trajectories, across several frames provide better separation between the objects

and the background than do single optical flow fields. Once trajectories have been

collected across several frames, the trajectories are histogrammed. The resulting

histogram is partitioned into clusters of motion. Finally, the result of the segmentation

phase is generated by partitioning the image into sets of pixels that exhibit trajectories

that belong in the same histogram cluster.

A common, second stage of gray-level histogramming makes use of state-space

search to compensate for the likelihood that no single pair of gray-level thresholds pick

out an object. This search involves splitting and merging regions of clustered pixels

to achieve better segmentations based on spatial proximity [16, 51]. These splitting

and merging techniques appear unsuitable for general purpose, real-time systems for

two reasons. First, regions must be split and merged based on arbitrary criteria

comparing global similarity and coherence. The arbitrary criteria used for deciding

how to merge and split make the approach unsuitable for unstructured environments.

Second, state space search among segmentations appears prohibitively expensive in

that it involves search through a large space of segmentations, with global evaluation

CHAPTER 5. MOTION SEGMENTATION 83

steps at each branch point.

This motion histogramming technique relies on the restriction of camera motion

to pivoting about the center of projection (i.e.rotations about the x and y axes; see

Section 2.2). This restriction on motion ensures that objects which are not moving

independently will have very similar camera-relative motions, and hence form a single

cluster in the histogram.

The chapter begins with a description of how trajectories are formed and his-

togrammed. Methods for partitioning the resulting histogram are presented. Next,

the definition of the result of segmentation is given. Finally, limitations and related

work are discussed.

5.1 Forming trajectories

The trajectory of a pixel represents the motion of the pixel across the previous ns

frames. Trajectories are formed by composing the optical flow fields across the ns

frames. Optical flow fields with non-uniform motion are in general not surjective and

hence, the resulting field of trajectories may not assign a trajectory to each pixel.

However, extrapolated trajectories can be computed at gaps in the trajectory field,

based on the most recent motions that the pixel has undergone.

Recall from Section 4.3 that the optical flow field Mi is used as the basis for

producing an injective inverse to the optical flow field, M
−1
i . Using this definition of

M
−1
i the notion of the k-th predecessor, Pi(p, k), can be defined recursively:

Pi(p, 0) ≡ p

Pi(p, 1) ≡ M
−1
i−1(p)

Pi(p, k) ≡ Pi−1(M
−1
i−1(p), k − 1)

A field of trajectories, Ti(p, k), over k frames for pixels p ending at frame i can be

defined as the vector field difference,

Ti(p, k) ≡ p − Pi(p, k)

where ’−’ takes ⊥ to ⊥.

CHAPTER 5. MOTION SEGMENTATION 84

Because the optical flow fields are non-uniform, the trajectories for many pixels

may be ⊥. When the image is partitioned, each pixel is assigned to a partition based

on its trajectory. Pixels mapped to ⊥ will not be classifiable. However, trajectories

can be extrapolated based on motions that are known for some tail sequence of the

k frames.

T ′
i (p, k) ≡

⊥ if for all j, 1 ≤ j ≤ k, Pi(p, j) = ⊥
k
j
Ti(p, j) for the largest j, 1 ≤ j ≤ k, Pi(p, j) 6= ⊥

5.2 Histogramming trajectories

Forming the histogram, H i(v, ns), of the computed trajectories is straightforward.

For each possible trajectory, v (x,y displacement pair), count the number of pixels

that are mapped to the trajectory.

Hi(v, ns) ≡ |{ p | T i(p, ns) = v }|

It is essential that the histogramming step not include the extrapolated trajectories,

as they can skew the distribution of the histogram. Any pixel that is mapped to ⊥
by T will be mapped to ⊥ or some multiple of ns

j
for an integer j < ns by T ′. These

multiples are not uniformly distributed over the range of trajectories.

5.3 Partitioning the histogram

The trajectory histogram can be viewed as a topography. The idea of partitioning the

histogram is thus to split the topography into independent peaks. The partitioning

step produces a map Qi : T −→ 2P where T is the set of possible trajectory vectors.

Partitioning a one-dimensional histogram is intuitively simple. One merely needs

to look for minima in the histogram and split the histogram at these points. Since

the trajectory measurements are subject to noise, and since the form of the peaks

of the histogram depends on the distribution of motion in the underlying objects,

convolving the histogram with a Gaussian operator alleviates problems with anoma-

lous local minima. If the peaks in a histogram are viewed as representing the noisy

CHAPTER 5. MOTION SEGMENTATION 85

measurements of unique actual velocities, then pixels with velocities near a minimum

between two peaks are probably a mix from both underlying actual velocities. To

avoid velocities with such mixed distributions, one can partition peaks at inflection

points rather than minima by convolving with a Laplacian operator. Both of these

approaches work quite well on histograms of the x-component of trajectories.

Finding peaks in a two-dimensional histogram is slightly more complicated. An

algorithm for directly finding such peaks can proceed by growing local maxima out-

ward. By sorting the histogram entries by height and judicious use of doubly linked

lists, peaks can be found in time O(|T| lg |T|) where T is the set of trajectories. As

in the case of the one-dimensional histograms, the two-dimensional histogram can

be convolved with a two-dimensional Gaussian operator to minimize problems with

anomalous local minima.

Experiments with using a two-dimensional Laplacian operator for partitioning

the histogram provided fairly poor results. Using the decomposition of the Laplacian

into the sum of two separable convolutions, following the approximation suggested by

Huertas and Medioni [49], peaks ought to be outlined by a connected zero-crossing

edge at the inflection point. However, the close proximity of neighboring peaks makes

the detection of zero-crossings unreliable and results in inferior segmentations.

5.4 Partitioning the image

Once the trajectories have been partitioned into distinct clusters, a segmentation

Si(p) can be formed, assigning each pixel p to the cluster to which its trajectory

belongs.

Si(p) ≡ Qi(T
′
t(p, ns))

Note that here the extrapolated trajectories are used for classification, so that as

many pixels as possible can be classified.

Figures 5.1, 5.2, and 5.3 show the various stages of the segmentation process.

Figure 5.1 shows the first and last image of ns images used for generating trajecto-

ries. Note that the person has moved slightly to the right in the image, while the

CHAPTER 5. MOTION SEGMENTATION 86

Figure 5.1: First and last images used for segmentation

Figure 5.2: Trajectory histogram before and after smoothing

background has shifted significantly to the left. Figure 5.2 shows the histogram of

trajectories both before and after smoothing. The small peak on the right corre-

sponds to the person, while the large peak on the left corresponds to the background.

Figure 5.3 shows the outline of the resulting segmented object.

5.5 Limitations

This motion segmentation algorithm has difficulty picking out objects in which the

predominant motion is not a translation. For example, a disk spinning about the

z-axis would show up as a cloud in the trajectory histogram.

CHAPTER 5. MOTION SEGMENTATION 87

Figure 5.3: Outline of resulting segmentation

No connectivity is required or enforced in the output of segmentation. Two ob-

jects that display the same motion will be lumped in the same cluster. This policy

is justified by the inherent non-locality of connected component computation (see

Section 6.2). A reasonable approach to distinguishing distinct, but similarly moving

objects might follow the work of Mahoney [62], using local maxima of neighborhood

homogeneity as centers of distinct objects.

One might view using the motions across ns frames as similar to the conceptually

simpler idea of computing optical flow between the first and last frame. Each trajec-

tory represents where a pixel has moved from the first to the last frame. However,

computing optical flow between more widely spaced frames has two severe drawbacks.

First, as the time interval between frames increases the likelihood of encountering

large changes in scene appearance that would prevent good motion measurements

also increases. Second, as the maximum possible displacement increases, the area of

the local search increases quadratically. This increase in search area results in corre-

sponding quadratic increases in both the amount of ambiguity in motion estimates,

and the cost of computing the flow field.

CHAPTER 5. MOTION SEGMENTATION 88

5.6 Complexity

Forming trajectories takes two operations per pixel per frame. In parallel, forming

trajectories also involves one non-local communication per pixel per frame. His-

togramming the trajectories takes two operations per pixel, and involves global com-

munication in parallel. Since the trajectory histogram is not associated with any

particular pixel and since it is much smaller than the number of processors on a

SIMD machine, histogram partitioning is best done on a serial, front-end computer.

Smoothing the histogram by means of two one-dimensional convolutions with a Gaus-

sian filter with a support width of dg takes O(3dg|T|) operations. Partitioning the

histogram takes time O(|T| lg |T|).
In summary, segmentation over ns frames takes:

Computation:

Phase Serial Parallel

Segmentation O((2ns + 2)N2 + (3dg + lg |T|)|T|) 2ns + 2 + (3dg + lg |T|)|T|

Communication:
Phase Non-hypercube communication

Segmentation O(ns + 1)

5.7 Related work

All motion segmentation techniques share the basic intuition that a moving object in a

scene may be picked out on the basis of its distinct motion. Early attempts at motion

segmentation suffered from the misapprehension that computing a dense motion field

is an inconceivably expensive task. Another common weakness in attempts at motion

segmentation stems from only considering the motions arising from one pair of images.

Only two groups appear to have used motion information from more than a single

pair of images [36, 83].

An early approach by Potter [76] computes motion using a rather special purpose

edge template matching scheme. Images are primarily segmented based on regions

CHAPTER 5. MOTION SEGMENTATION 89

of identical motion. Nearby points are grouped when mathematical continuity in the

underlying motion appears likely.

Fennema and Thompson [33] present an elegant method for using a form of Hough

transform of normal flow estimates from the entire image to perform segmentation.

Normal flow estimates are mapped to sets of points in direction and magnitude space

consistent with them. These direction and magnitude space points are histogrammed.

The predominant line in the direction and magnitude space is assumed to correspond

to a moving object. Points corresponding to this image motion are declared to be one

object. The process is then repeated on the portions of the image not classified by the

previous pass. Thompson [90] elaborated on this technique by combining intensity

information with the normal-flow-based technique. Difficulties with this normal flow

approach include dependence on unfiltered normal flow components that are highly

susceptible to noise, the expense of plotting sets of points in the Hough transform

space, and the basic premise of only using two frames for segmentation.

Bandopadhay [12] describes a global motion estimation and segmentation algo-

rithm that is similar to the work of Fennema and Thompson. Initial motion estimates

are formed by pairing selected interest points, rather than normal flow vectors. Initial

estimates are globally histogrammed to provide for feed back to the initial motion

estimation step. The algorithm and its effectiveness are not well expressed. However,

the dependence on interest points and the motions between pairs of frames probably

limits the utility of the approach.

Jain et al. [50] experimented extensively with using image differences to perform

segmentation of moving objects. Although image differences are extremely cheap

to perform, the cases in which differencing gives reasonable results vary widely, de-

pending on the intensity contrast of object and background, and how far the object

has moved. When the camera undergoes motion, differencing becomes still more

problematic.

Another approach to motion-based segmentation involves attempting to find dis-

continuities in the motion field, and using these detected discontinuities as the borders

of distinctly moving image regions. Thompson et al. [91] convolve the x and y com-

ponents of a motion field with the Laplacian of the Gaussian. The two results of

CHAPTER 5. MOTION SEGMENTATION 90

this convolution are combined into a vector field. Vector reversals indicate motion

boundaries. This work was extended in [92], and [68] with particular emphasis on

detecting occluding surfaces.

Spoerri and Ullman [87] attempt to detect motion edges by examining the struc-

ture of local histograms of neighboring motion estimates. Significant bi-modality, for

example, is evidence for the presence of a motion boundary. Black and Anandan [15]

perform similar examinations of the SSD surface for evidence of motion boundaries.

Detecting motion boundaries can be useful for improving motion estimates near

object boundaries. However, for detecting distinctly moving objects, edges must be

aggregated to form distinct regions of motion. Methods that are based on the Lapla-

cian may produce connected edges, but will often produce spurious zero crossings

scattered about the image. Methods based on examining the structure of a locally

computed motion surface suffer from the problem that the surface characterizations

involved are essentially heuristic and cannot be expected to produce connected motion

boundaries.

Adiv [2] uses a Hough transform to break an image into regions whose motion is

consistent with rigid motion of a planar patch. These initial regions are iteratively

combined to form object hypotheses that are consistent with the same 3-D translation

and rotation parameters. This method may be time consuming and relies heavily on

the rigidity of objects in the scene.

The idea of characterizing the motion segmentation problem as a regularization

problem has been explored by several researchers. Murray and Buxton [67] formulate

a criterion for a “best segmentation” based on the model that the scene is made up of

a fixed number of moving planar surface patches. A search for an interpretation of the

scene that is consistent with measured normal flow vectors is made using simulated

annealing. François and Bouthemy [36] follow a somewhat similar tack, but allow

the use of the output of one segmentation as the seed for the segmentation of the

subsequent pair of images. The principal shortcomings of these regularization-based

approaches are the prespecification of the number of objects expected, and the cost

of optimization techniques.

Thompson and Pong [93] discuss various techniques for detecting moving objects in

CHAPTER 5. MOTION SEGMENTATION 91

cases of restricted camera motion. They present a method for determining whether an

object that is being tracked1 is actually moving. The test involves histogramming the

directions of optical flow vectors in a scene. If the histogram is bi-modal, the tracked

object is moving. Another set of techniques involve knowing some camera motion

parameter so that motions inconsistent with the known motion can be detected.

Nelson [70] proposes a similar technique for detecting objects when the camera is

known to be translating forward.

Burt et al. [21] propose a motion segmentation algorithm based on successively

factoring out distinct components of motion and recomputing motion in regions incon-

sistent with previously discovered components. Peleg and Rom [75] propose a similar

method that successively factors out 3-D motions. Both these approaches make use

of an hierarchical motion computation so that they can handle great disparities in

velocity. However, both require fairly rigid objects in order for the grouping of con-

sistent motions. The 3-D approach further suffers from the extreme environmental

constraints that current techniques for measuring 3-D motion require (e.g., the scene

must have uniform depth).

Shio and Sklansky [83] present a system for picking out distinct moving people

in a stationary camera scene. The segmentation is made based on a sequence of

images rather than a single pair. Their method, however, relies on an ad hoc motion

computation and camera stationarity.

5.8 Discussion

The motion segmentation algorithm described works well, as evidenced by the success

of the two implemented camera-panning systems. Often spurious pixels are included

in resulting segmentations. The adjustment phase of the tracking algorithm (Sec-

tion 6.2), eliminates these pixels as they tend not to move with the segmented object.

If more than one object is moving with the same trajectory, all the pixels corre-

sponding to the like-moving objects will form one cluster in the trajectory histogram.

Since there is no global connectivity step in the segmentation algorithm, all of these

1“Tracked” in the sense of camera pursuit (See Section 1.3)

CHAPTER 5. MOTION SEGMENTATION 92

like-moving pixels will be grouped in one object map. Similarly, if only part of an

object moves during the interval used for computing trajectories, only the part that

moved will be selected in an object map.

Since images are taken either from a stationary camera or a camera that is un-

dergoing rotation about the center of projection on the x and y axes, the effects of

parallax are minimal. For more general camera motions, parallax would cause the

trajectories corresponding to background motion to be less uniform. In extreme cases,

large translations in a cluttered environment would cause a less homogeneous set of

trajectories and might interfere with the clustering step.

Chapter 6

Motion tracking

This chapter describes the motion-based tracking algorithm. The algorithm is in-

tended to maintain the approximate image extent of a tracked object from frame

to frame. There are two cross-temporal goals to this tracking problem: maintain-

ing correspondence and maintaining coherence. Maintaining correspondence involves

determining where each part of the object that is being tracked has gone to. Maintain-

ing coherence of the representation of the object being tracked requires dealing both

with parts of the object that appear and disappear, and with errors in maintaining

correspondence.

Formally, for each cycle, the tracking algorithm takes two rectified (i.e., injective)

optical flow fields M i and M i+1, and a boolean map, Oi, representing the extent of

the object in image I i as input. As output, it produces a new boolean map Oi+1

representing the position of the object in image I i+1.

For simplicity of explanation, only the situation in which one object is being

tracked is described. Tracking multiple objects can be handled by running the same

algorithm with distinct data structures for each object that is being tracked.

The primary intuition behind the tracking algorithm is focussed on maintaining

correspondence. If some set of pixels corresponds to the position of an object in

one frame, then mapping that set of pixels through the optical flow field ought to

produce a new set of pixels corresponding to the new position of the object. Thus,

by projecting the tracked object through successive flow fields, one ought to be able

93

CHAPTER 6. MOTION TRACKING 94

to keep track of the position of an object across many images. Errors resulting from

discretization, noise, occlusion and inclusion, however, tend to force the set of tracked

pixels to diverge from those corresponding to the projected object.

The second intuition behind the tracking algorithm is focussed on maintaining

coherence of the representation of the tracked object. Over time, the outline of

a moving object tends to correspond to motion boundaries in the flow field. The

existence of this correspondence between the outline of a moving object and the

motion boundaries can be used to compensate for degradation in the tracked region

resulting from projection or initial inaccuracy. In the ideal case of a rigid object

translating against a stationary background, object boundaries precisely coincide with

edges in the optical flow field. With non-rigid objects, and a shifting background, the

claim, although more qualitative, remains true in most cases.

Consistent with these two ideas, the tracking algorithm has two steps for gener-

ating the best approximation to the image relative position of Õi+1: projecting the

tracked object through the flow field M i, and adjusting the extent of the tracked

region to agree with motion boundaries. Projection is described first. Next, the mo-

tivation for adjustment, and algorithms that perform it are presented. The chapter

concludes with a discussion of related object tracking systems.

The tracking algorithm produces several intermediate steps in the generation of

Oi+1 from Oi. The various stages of intermediate object representation are denoted

Oi, O1
i+1, O2

i+1, and Oi+1.

6.1 Projection

The projection step in which the tracked object is passed through the flow field has

two phases. The first is the obvious application of the injective optical flow field

to the boolean tracked image. The second step is a clean-up operation intended to

resolve gaps introduced in the projected object as a consequence of the injective flow

field not being surjective. The output of the first phase is denoted O1
i+1. The output

of the second phase, denoted O2
i+1, is O1

i+1 with gaps filled. This projected and filled

representation is the output of the projection step.

CHAPTER 6. MOTION TRACKING 95

Recall that M i is the injective optical flow field, constructed in Section 4.3, that

maps pixels in image I i to pixels in image I i+1, and that M
−1
i is the inverse of M i. If

Oi(p) is true, that is if part of the object is assumed to be mapped by the projection

relation to p, and if M i(p) = p′, then O1
i+1(p

′) is true as well. Thus, the first boolean

result O1
i+1 is simply Oi mapped through M i wherever M i is defined.

O1
i+1(p) ≡

Oi(M
−1
i (p)) if M

−1
i (p) 6= ⊥

⊥ otherwise

This intermediate result maps pixels to ⊥ that are not in the range of M i; i.e., if M i

maps no pixel to pixel p, then O1
i+1(p) = ⊥. The result of the second phase, O2

i+1

only differs from O1
i+1 at those points where O1

i+1 = ⊥.

A pixel p that is mapped to ⊥ by O1
i+1 is mapped to 1 by O2

i+1 if a majority of

pixels in a local neighborhood of diameter dp surrounding p are mapped to 1 by O1
i+1,

otherwise, pixel p is mapped to 0.

O2
i+1(p) ≡

O1
i+1(p) if O1

i+1(p) 6= ⊥

1 if
dp

2

2
<

∑

[
−dp

2
<j≤ dp

2
]

∑

[
−dp

2
<k≤ dp

2
]

↓ O1
i+1(p + 〈j, k〉)

0 otherwise,

The function ↓ maps ⊥ to 0 and is the identity function otherwise. In practice, dp is

seven or eight.

Since a region that is mapped to ⊥ corresponds to a place where no pixel is

estimated to have gone, the region is likely to represent an area of non-uniform motion.

If such a region occurs inside an object, it may result from non-rigid motion, and most

of the local neighborhood will be part of O1
i+1. If such a region occurs at the edge

of an object, it may result from pixels being uncovered, and at least half of the local

neighborhood is probably not in O1
i+1. This winner-takes-all scheme has the effect of

filling holes in the tracked object introduced by non-rigid motion and disregarding

uncovered pixels.

The first phase of projection requires two address computation operations in serial,

and a non-hypercube communication in parallel. The winner-takes-all second phase

can be handled using the dynamic programming techniques from Section 2.7 for

CHAPTER 6. MOTION TRACKING 96

computing local sums. Thus, in serial, the second phase takes four operations per

pixel, while it takes 2 lg dp operations and hypercube communications in parallel. The

cost of projecting is summarized below.

Computation Communication

Phase Serial Parallel Hypercube Non-hypercube

Projection O(6N2) O(2 lg dp) O(2 lg dp) O(1)

6.2 Adjustment

The optical flow algorithm described in Chapter 4 produces a discrete approximation

to the continuous motion field. Discretization introduces some inaccuracy into the

flow field. Noise, local effects near discontinuities in the motion field, and other

phenomena can result in more severe inaccuracies in the flow field. Thus, over many

frames, merely composing the results of the projection phase of tracking would tend

to compound these inaccuracies. The compounded inaccuracies would, in turn, cause

the approximation On to diverge from the actual projected image extent of the tracked

object, Õn.

The goal of the adjustment step of the tracking algorithm is to maintain the

coherence of the representation of the tracked object. If the motion of an object

between times t1 and t2 is captured on images Ii+1 and I i+2, some set of pixels

on I i+1 that moved cohesively ought to correspond to the projected object Õi+1.

The adjustment phase of the tracking algorithm attempts to take advantage of this

localization of the motion of an object to improve the estimate of the position of the

tracked object. The adjustment phase takes as input O2
i+1, the output of projection,

and a rectified optical flow field M i+1, and produces Oi+1, the final estimate of the

image position of Õi+1.

The idea of adjustment is first presented as a global algorithm based on connected

components of motion. The global algorithm is shown to have shortcomings relating

to its global nature. Next, a local version of adjustment is described. Several local

approximations to connected components are analyzed. Finally, the computational

complexity of adjustment is presented.

CHAPTER 6. MOTION TRACKING 97

6.2.1 Global adjustment

Suppose one had a boolean image A that approximates the actual image location

Õi+1 of an object and a flow field M̃ i+1 specifying the motion between image I i+1 and

I i+2. The image A would be approximate in the sense that some pixels in A are not

in Õi+1 and some pixels in Õi+1 are not in A. The goal of adjustment is to produce

a better estimate A′ of the image location of the object Õi+1 using information in

the motion field M̃ i+1. An estimate A′ is better than another estimate A if it more

closely approximates Õi+1, ie. if

|(Õi+1 − A′) ∪ (A′ − Õi+1)| ≤ |(Õi+1 − A) ∪ (A − Õi+1)|.

Imagine that a rigid object is translating in the image plane at two pixels to the

right per frame. The motion field M̃ i+1 will have the property that pixels correspond-

ing to Õi+1 will be moving two pixels to the right, while the remaining pixels will

move with the background. Knowing that the object is translating in this fashion

would allow one to specify an improved A instantly; simply declare A′ to be the set

of pixels that are moving at two pixels to the right. In general, one does not have

any such accurate prior knowledge of the object’s motion.

If the input estimate A is sufficiently close to Õi+1, one can still produce a better

estimate A′ given the motion field M̃ i+1, without prior knowledge of the object’s

motion. The key observation is that the majority of pixels that are moving right two

are in A and similarly, the majority of pixels moving with the background are not in

A.

This observation can be generalized into an algorithm based on the consensus of

connected components of motion. The image can be broken up into regions of uniform

motion. If the majority of such a region is part of A, then it can be assumed that the

region represents a part of the moving object and all of the region can be made part

of A′. Similarly, if the majority of a region is not in A, then it can be assumed that

the region does not correspond to the moving object and none of the region is part

of A′.

Formally, the set of connected components of motion C = {C1, . . . , Ck} for a

CHAPTER 6. MOTION TRACKING 98

motion field M̃ is a partition of the set of pixels in which each subset Cj is a four-

connected set of pixels all manifesting the same displacement. As a function C(p)

maps a pixel p to the subset Cj ∈ C that contains p. Notice that the area of the

motion field corresponding to a translating, unoccluded, rigid object is approximately

uniform, and hence forms a connected component of motion. In general, a moving

object will correspond to one or more connected components of motion in the motion

field.

An improved estimate A′ is the union of connected components whose majority

is in A. The majority of a component C is in A if the number of pixels in C is less

than twice the number of pixels that are both in C and A. The improved estimate

A′ is thus composed of the set of components that are mostly moving with A.

A′(p) ≡ |Ci+1(p)| < 2|Ci+1(p) ∩ A|

If the motion field M̃ i+1 and approximation A meet certain criteria, this consensus

algorithm can be shown to produce a solution A′ that is identical to Õi+1. Suppose

(1) that the object is moving distinctly from the background, so that the boundaries

of Õi+1 coincide with motion boundaries. Further, suppose (2) that the approximate

guess A is good enough in the sense that when a pixel p is in Õi+1 and not in A, it

is in a component of motion that is mostly part of A, and when p is in A and not

in Õi+1, it is in a component of motion that is mostly not in A. Given these two

hypotheses, it is easy to see that any superfluous pixel in A will not appear in A′,

since the majority of its component is not in A, and a pixel missing in A will appear

in A′, since the majority of its component is in A. A′ will coincide with Õi+1 because

the boundaries of Õi+1 correspond to boundaries of the connected components of

motion. The left side of Figure 6.1 shows the projection O, of a stylized round object

translating right against a stationary background. The flow field has two connected

components, the right-going circle and the stationary background. The right side of

Figure 6.1 shows the original approximation to the position of the object A. The

left side of Figure 6.2 shows the approximation A overlaid with the motion edges

resulting from the translating object. Clearly any pixel inside the circle lies in a

connected component that is mostly in A. Similarly, any pixel outside the circle lies

CHAPTER 6. MOTION TRACKING 99

Figure 6.1: Moving object Õ and approximation A

Figure 6.2: Motion edges over A and the adjusted object A′

CHAPTER 6. MOTION TRACKING 100

in a connected component that is mostly not in A. The right side of Figure 6.2 shows

the resulting improved boolean map A′.

This global algorithm based on determining the majority of pixels in connected

components of motion has two principal drawbacks: its effects can be too drastic,

and computing connected components on a parallel machine necessarily requires sig-

nificant amounts of communication, and is hence expensive. The algorithm can be

seen to have dire effects by considering the case of an object that stops for a frame.

There will be exactly one connected component of motion. If the initial approximate

object A is less than half of the image, the new approximation A′ will be the empty

set. If A is more than half of the image, A′ will constitute the whole image.

To see that computing connected components involves significant communication,

consider a region of uniform motion that is spiral. The whole length of the spiral

must end up in the same component, with the same label, and hence the label must

be communicated from one end of the spiral to the other. Cypher et al. [29] have

described an algorithm that computes connected components on a SIMD computer

with O(N lg N) communications for an N × N image.

6.2.2 Local adjustment

Some local form of adjustment is needed to sidestep the drawbacks of global adjust-

ment. By maintaining the principle of the consensus of a homogeneous region and

localizing the idea of connected components, local adjustment can be achieved. The

intuition is to somehow determine for the neighborhood surrounding a pixel, a local

connected component, and then to compute whether the majority of this local com-

ponent is in A. Such a local scheme reduces the problem of drastic change, since it

can only have effects at the perimeter of the approximation to the object’s position,

A. A local adjustment algorithm also has the potential of reducing computational

cost by reducing the amount of communication needed.

A local notion of connected component can be defined with respect to a local

neighborhood, R(p), a set of pixels in a square region surrounding p of width and

CHAPTER 6. MOTION TRACKING 101

height da.

R(p) ≡
⋃

[−da
2

<j≤ da
2

]

⋃

[−da
2

<k≤ da
2

]

p + 〈j, k〉

A local component Cl(p) is a subset of R(p) that satisfies some definition of compo-

nenthood. Given such a sketch of a definition of a local component, the adjustment

algorithm can be redefined locally.

A′(p) ≡ |Cl(p)| < 2|A ∩ Cl(p)|

The question remains how to define Cl(p). Four approaches seem to be more or

less plausible.

The first approach would be to compute the connected components of motion

on each pixel’s local neighborhood. This would be impractically expensive in serial

due to duplication of effort. On a SIMD machine, the computation would also be

prohibitive, as connected component computations require branching and/or address

indirection.

The second approach is similar to the first, but instead of computing connected

components for each pixel, the connected components for the whole image would be

computed. The local pixel’s subregion R(p) intersected with the global connected

component labelling would be taken to be the local component. This approach might

be practical in serial, but in parallel, it would require computing global connectedness,

and hence at least as much communication as the global solution.

A third approach involves noting that for small regions R(p), the subset of pixels

of R(p) with the same displacement as p is a close approximation to the connected

component containing p intersected with R(p). Instead of requiring that pixels be

connected, consider all pixels in R(p) that exhibit the same motion to be the local

component. This definition for local components that ignores connectivity is used in

the serial implementation and is denoted C=. In serial, Oi+1 is defined from O2
i+1 to

be:

Oi+1(p) ≡ |C=(p)| < 2|O2
i+1 ∩ C=(p)|.

The final and by far the most difficult to describe approach involves computing a

local, radial approximation to connectedness at each pixel. This local approximation,

CHAPTER 6. MOTION TRACKING 102

written Cr is the most effective SIMD algorithm, and hence is used for the Connection

Machine implementation. In parallel, Oi+1 is defined from O2
i+1 to be:

Oi+1(p) ≡ |Cr(p)| < 2|O2
i+1 ∩ Cr(p)|.

6.2.3 Serial local components

The definition of a local component for a pixel p that is used in the serial implemen-

tation is the set of pixels in a local region that have the same displacement vector as

p.

C=(p) ≡ { p′ ∈ R(p) | M(p) = M(p′) }

Two values |O2
i+1 ∩ C=(p)|, and |C=(p)| are needed to compute Oi+1(p) for each

pixel. Perhaps the most straightforward implementation of this algorithm would in-

volve counting these two quantities for each pixel. The cost would be approximately

O(2d2
aN

2). In the implemented systems, da is 15, so the cost of this computation,

O(450N2) would swamp the cost of computing optical flow.

Another approach is to use the dynamic programming techniques from Section 2.7.

For each pixel, the result of the dynamic programming computation is a vector of

counts with 2|D| entries. For each displacement d ∈ D, there are two entries. One

consists of the count of pixels in the local neighborhood surrounding p that are moving

with the displacement. The other is the number of these similarly moving pixels that

are also tracked. The appropriate counts for a given pixel p can be accessed by looking

at the pair of entries for displacement d = M(p).

In this case, the basic operation, ⊗, is vector addition. The individual elements

that are added and subtracted to form a new vector, are vectors with single, unit

entries. Computing a new column vector sum takes only two operations for the count

of similarly moving pixels, and two operations for the count of similarly moving pixels

that are tracked. As noted in Appendix B, forming a new area sum involves adding

and subtracting full vectors of length 2|D| The total cost is then O((4 + 4|D|)N2).

In practice, |D| is 37, so the cost is O(152N2).

A single column of da pixels can have at most da pixels with distinct displacements.

In fact, since the optical flow field tends to be smooth, each column will generally have

CHAPTER 6. MOTION TRACKING 103

far fewer than da distinct motions represented. These observations argue that a sparse

vector representation should be used to represent the various counts in question. The

single entry additions and subtractions that produce column sums can no longer be

computed in unit time, since the appropriate entries must be found by searching. Let

the number of distinct motions in a column be denoted na. In the worst case, na = da.

In practice an average value for na is less than 3. Finding the two necessary entries

can be done in 2na operations, while the individual additions and subtractions have

unit cost. The cost of producing a new column vector sum is (2na + 4)N2. The area

sum requires adding 2na entries and subtracting 2na entries from the previous area

sum. The total cost for each pixel is (6na + 4)N2. In the worst case na would be da,

so the algorithm has complexity O(6da + 4N2). The worst case cost is approximately

94 operations per pixel, for da = 15, and the empirical average case cost, for da = 3,

is approximately 22 operations per pixel.

The SIMD cost of computing C= is quite high. To facilitate comparison with the

actual computation used for adjustment in parallel, the SIMD cost is expressed in

terms of the number of hypercube communications, the number of bits communicated,

and the number of bits processed.

Recall that C= is just the set of pixels in the local neighborhood that have the

same displacement vector. Probably the most efficient algorithm for computing C= in-

volves making a local copy of all the neighboring displacement vectors and identifying

those that have the same displacement as the center pixel. The creation of the local

copy can be done using the local dynamic programming techniques of Section 2.7,

with concatenation as the operator ⊗. For a local neighborhood of diameter da, the

local copy requires O(2 lg da) communications. Each displacement vector requires

lg |D| bits to represent, so O(1 + lg |D|d2
a) bits must be transmitted per processor.

Finally, identifying the neighboring pixels with the same displacement requires d2
a−1

comparisons of length lg |D|, for a total of O((d2
a − 1) lg |D|) bit operations.

6.2.4 Parallel local components

This section describes a very efficient algorithm for computing a local approximation

to connected components on each processor of a SIMD computer. The definition of

CHAPTER 6. MOTION TRACKING 104

a a a a a

a

a

a

a

a

a

b b b

b

b

b

b

a

a

1 2 3 4 5

4

3

2

1

Figure 6.3: Recalcitrant connected components

radially connected components Cr is an example of a formal notion arising from a

combination of partial constraint on what is to be computed, and partial constraint

on computational cost. The constraint on what is to be computed is that the result

should be a local approximation to the connected component computation, with the

relaxation that the component containing the central element is the only one of inter-

est. The constraint on computational cost is that the algorithm be suitable for SIMD

implementation and be cheap. Pixels will be described as being labeled with a color,

rather than a displacement, as the algorithm has application to other problems than

connectivity of flow fields.

One property of the connected components problem makes it expensive to com-

pute. Connected components are traditionally computed in slightly more than one

pass by scanning left to right, top to bottom. Whenever a pixel with a distinct color

is encountered, a new label is introduced. The drawback to the algorithm is that

during processing two pixels that will eventually end up with the same label may

be temporarily marked with distinct labels. To avoid backtracking, an additional

data-structure is used to record equivalences between the labels of such pixels, and a

final pass marks each pixel with the correct label. An example which suggests that

there is no way to avoid these temporary labelings is shown in Figure 6.3. The ‘a’s

and ‘b’s are the colors that determine pixel equivalence. Processing top to bottom,

left to right, there is no way of knowing while working on row one, that columns one

and five ought to have the same label. Only when processing the bottom row does it

become clear that columns one and five are in the same connected component.

If connected components were being computed locally on each processor, this

final step of updating pixel labelings would require non-uniform processing on each

CHAPTER 6. MOTION TRACKING 105

processor. Some processors might require no re-labeling, while other processors might

require extensive re-labeling.

The observations that motivate the notion of radially connected components are

that each pixel only cares about the connected component that is centered about

itself, and that only degenerate regions such as spirals require more than one pass.

The definition of a radially connected component, Cr, combines these two observations,

specifying a component that is “grown out” from the center pixel, or origin.

To precisely specify the notion of a radially connected component, a connectivity

graph is defined to represent the pixel grid on which the connected component is to be

computed. Given this graph, the notions of a legal transition on the graph, and legal

reachability in k steps are defined. Finally radially connected components is defined

in terms of legal reachability in ra = ⌊da

2
⌋ steps:

Cr(p) ≡ { p′ | legally-reachable(p′, p, ra) }.

The connectivity graph

Define the directed connectivity graph G = 〈E,V〉. The vertices from the set V

are labeled with triples: 〈color, x, y〉. For each pair of integers, x, y, there is exactly

one vertex with these x and y coordinates. The edges E represent 4-connectedness

among vertices labeled with the same color. An edge (v1, v2) is an element of E if

color(v1) = color(v2) and the vertices are 4-connected, that is, either

x(v1) = x(v2) ∧ |y(v1) − y(v2)| = 1.

or

y(v1) = y(v2) ∧ |x(v1) − x(v2)| = 1

Figure 6.4 shows such a connectivity graph. Vertices are labeled with a’s and b’s to

indicate their colors. The labels on the left and bottom edges denote the y and x

coordinates of the vertices. The vertex at position (0, 0), the center pixel, is called

the origin.

CHAPTER 6. MOTION TRACKING 106

−2 −1 0 1 2

−2

−1

0

1

2

b

b

b

a

a

b

b

b

b

b

a

a

a

b

b

a

a

a

b b

a a

a

a

b

-

-

-

�

�

�

6

6

?

?

6? -

-

�

�

6

6

6

6

?

?

?

? 6?

-

-

-

-

�

�

�

�

-

-

�

�

-

-

�

�

6 6 6? ? ?

6 6? ?

6?

Figure 6.4: The connectivity graph for a small image

D

D

I

I

A

A

G

O

O

N

N

A

A

L

L

VERTICAL

VERTICAL

HORIZONTAL HORIZONTAL

Figure 6.5: The three sets of vertices

Legal transitions

In order to define legal transitions on the connectivity graph, partition the vertices

into three sets with respect to the origin: the vertical vertices in which |x| < |y|, the

horizontal vertices in which |x| > |y|, and the diagonal vertices in which |x| = |y|.
These three sets of vertices are shown in Figure 6.5.

Given these three sets of vertices, two classes of edges are defined on the connec-

tivity graph: radial and lateral edges. The notions of radial and lateral edges are

intended to make sense in terms of the origin (the vertex with 0 as its x and y labels).

A radial edge goes away from the origin, while a lateral edge lies on a square centered

at the origin.

CHAPTER 6. MOTION TRACKING 107

6

?
-�

? ? ?
�

�

� -

-

-

666

? ? ? ? ?
�

�

�

�

� -

-

-

-

-

66666

Figure 6.6: The radial edges restricted to 4-connectivity

-�

-�
6

?

6

?

- - -� � �

- - -� � �

6

6

6

?

?

?
6

6

6

?

?

?

- - - - -� � � � �

- - - - -� � � � �

6

6

6

6

6

?

?

?

?

?

6

6

6

6

6

?

?

?

?

?

Figure 6.7: The lateral edges restricted to 4-connectivity

An edge (v1, v2) is a radial edge if v1 is either a vertical vertex or a diagonal vertex

and |y(v1)| < |y(v2)|, or if v1 is either an horizontal vertex or a diagonal vertex and

|x(v1)| < |x(v2)|. This definition is a very weak constraint, but in conjunction with

the 4-connectivity requirement specified by the connectivity graph, only transitions

that grow out radially from the origin are admitted. Figure 6.6 shows the radial edges

restricted to 4-connectivity.

An edge (v1, v2) is a lateral edge if v1 is a vertical vertex and x(v1) 6= x(v2), or if

v1 is an horizontal vertex and y(v1) 6= y(v2). This definition is similarly weak, but in

conjunction with the 4-connectivity requirement restricts transitions to those edges

lying on concentric squares centered about the origin. Figure 6.7 depicts the lateral

moves restricted to 4-connectivity.

A legal transition involves traversing either a single radial edge from the start-

ing vertex, or traversing a radial edge followed by a lateral edge. More formally, a

CHAPTER 6. MOTION TRACKING 108

t

origin

t t t t t t t

t t t t t t t

t
t
t
t
t
t
t

t
t
t
t
t
t
t

Figure 6.8: Vertices legally reachable in 3 steps

transition from one vertex v1 in V to another vertex v2 in V is a legal transition, if

1. (v1, v2) ∈ E and (v1, v2) is a radial edge, or

2. There is a third vertex v3 ∈ V such that (v1, v3) ∈ E, (v3, v2) ∈ E, (v1, v3) is a

radial edge, and (v3, v2) is a lateral edge.

Legal reachability and radial connectedness

A vertex v2 is legally reachable in 1 step from vertex v1 if (v1, v2) is a legal transition.

A vertex v2 is legally reachable in k steps from vertex v1, legally-reachable(v2, v1, k),

if there is another vertex v3 such that (v1, v3) is a legal transition, and v2 is legally

reachable from v3 in k − 1 steps. Figure 6.8 shows those vertices reachable in 3 steps

from the origin in an image of uniform color. A radially connected component of

radius k is all those vertices legally reachable in k or fewer steps from the origin.

The key properties of legal reachability in conjunction with the 4-connectedness

graph are that the sets of legally reachable vertices are disjoint for each k, and that

the set of legally reachable vertices for k + 1 steps is determined by the set of legally

reachable vertices for k steps. Thus to compute a radially connected component of

radius k, one can serially compute the concentric rings of legally reachable vertices

for j = 1, 2, . . . , k.

By mapping these notions about graphs back to images, the definition of legal

reachability can be applied to pixels. In this way, for k = ra = ⌊da

2
⌋,

Cr(p) ≡ { p′ | legally-reachable(p′, p, ra) }.

CHAPTER 6. MOTION TRACKING 109

The cost of radial components

Having defined locally connected components, it is worth analyzing their computa-

tional cost, and comparing this cost with that of the alternate idea of counting local

pixels with the same displacement vector. Locally connected components can be

computed using a small quantity of initial communication followed by ra phases of

outward growth at each pixel.

Each pixel determines whether it has a distinct color from its north and east neigh-

bors. A local copy of this information is collected at each pixel in the form of two

boolean maps centered at the local pixel, that demarcate region boundaries. Once

these local region boundaries are known, radial connectivity with the central pixel

can be determined in ra steps. The initial connected component is represented as a

boolean map including only the central pixel itself. Each step involves a radial ex-

pansion, followed by two lateral expansions, one clockwise, and one counterclockwise.

These phases can be most easily explained in terms of the initial step of growing from

the central pixel to the three by three square surrounding the central pixel. The ra-

dial expansion in this case consists of adding any of the four pixels to the north, east,

south and west, that do not lie across color region discontinuities. The clockwise lat-

eral phase involves adding the northeast pixel if the north pixel has been added, and

if there is no region boundary between the north pixel and the northeast pixel, and

similarly for each of the other three corners. In the counterclockwise lateral phase, the

northeast pixel is added if the east pixel is included, and there is no region boundary

between the east pixel and the northeast pixel, and so on for the other three corners.

Each of the subsequent steps for radii 2, 3, . . . , ra is similar, but requires expansion of

the whole perimeter of the previous step.

Determining the initial north-south and east-west discontinuities requires two local

communications and two comparisons of lg |D| bits each. The local copy of these

discontinuities can be made using the standard dynamic programming techniques

in O(2 lg da) communications, involving 2d2
a bits. For each concentric ring, steps

i = 0, 1, . . . , ra − 1, a radial expansion requires considering 1 + 2i additional cells for

each of four directions. Similarly, each lateral expansion requires considering 1 + 2i

additional cells for each of four directions. The total cost for computing the radial

CHAPTER 6. MOTION TRACKING 110

component given the local connectivity information is thus:

∑

0≤i<ra

4 · 3 · (1 + 2i) = 12r2
a.

Since ra = ⌊da

2
⌋, 12r2

a ≤ 3d2
a. The comparison of the costs for computing radially

connected components in parallel versus counting neighboring pixels with the same

label are presented below.

Method Computation Communications Bits communicated

Cr O(2 lg |D| + 3d2
a) O(2 + 2 lg da) O(2 lg |D| + 2d2

a)

(da = 15, lg |D| = 6) 687 10 462

C= O((d2
a − 1) lg |D|) O(2 lg da) O(1 + lg |D|d2

a)

(da = 15, lg |D| = 6) 1344 8 1575

The final step to performing the adjustment involves counting the number of

pixels included in the local region, counting the number of pixels included that are

also tracked, and including or excluding the local pixel based on the result. This final

computation requires approximately 2d2
a operations.

6.2.5 Discussion

Adjustment is a fairly expensive operation, as summarized in the following table.

Phase Serial Parallel Hypercube

Adjustment O((6da + 4)N2) O(2 lg |D| + 3d2
a) O(2 + 2 lg da)

(average case) 22N2 — —

The algorithms as described support adjustment on one patch. Adjusting addi-

tional patches requires a small amount of additional work. To adjust multiple patches,

for each tracked patch, a count must be made of the number of pixels in the local

connected component that are part of the patch.

Adjustment relies on the assumption that object boundaries coincide with motion

boundaries. However, it also relies on the assumption that most motion boundaries

CHAPTER 6. MOTION TRACKING 111

in the vicinity of object boundaries coincide with object boundaries. If, for example,

the camera is undergoing a translation in a cluttered environment, there may be a

plethora of motion boundaries.

When an object stops moving, local adjustment does not have the drastic effects

of global adjustment. Yet, if the object’s stopping results in a uniform optical flow

field, local adjustment will have no local motion boundary to which to adjust. Thus,

a convex tracked object will be gradually eaten away by local adjustment, since all

pixels at the edge of the object will be moving with the same displacement and a

majority of them will not be part of the tracked object.

Adjusting the output of the projection phase greatly improves the quality of the

match between Oi+1 and Õi+1. Nevertheless, inaccuracies in the optical flow field,

motion boundaries internal to moving objects, and local effects from stop-and-go

motion all contribute to a gradual degradation in the projected and adjusted tracked

object over time.

6.3 Related work

The goal of tracking, as the term is used in this thesis, is to maintain information

about the image-relative position of an object across time. There are three principal

approaches that have been used to attack the problem. In 3-D model-based tracking,

a 3-D model of the object that is being tracked is used to determine the object

position across time. Special-purpose tracking takes advantage of distinctive visual

properties of the objects that are to be tracked in order to simplify tracking. Generic

object tracking algorithms, including the one described in this chapter, rely on visual

properties that are expected to exist over wide classes of objects.

6.3.1 3-D model-based approaches

Systems that rely on a known three dimensional model of the object to be tracked

tend to work in one of two ways. In one approach, the motions of individual features

are used to determine the overall change in pose of the object. In the other approach,

CHAPTER 6. MOTION TRACKING 112

a generate-and-test search in pose space is used to determine the new pose of an

object. Both approaches assume an initial pose is known. These approaches often

produce much more information than the image extent of the tracked object, but

depend critically on a known object model.

Gennery [37] assumes a surface model and known initial position. Predictions of

future positions of the object are generated from previous object motion and are used

to facilitate the search for object features. Measurements of feature positions are used

to improve estimates of object position. Thompson and Mundy [89] use a predicted

object position to seed a heuristic search in object pose space. Verghese et al. [97]

describe two algorithms. Their first algorithm assumes small changes in object pose

in order to perform a local search in pose space. Each pose is evaluated by comparing

predicted appearance with actual image. Their second algorithm assumes that image

features are tracked across time. Knowing the cross-temporal correspondence between

features makes it possible to determine the change in pose of the tracked object.

Lowe [60] extends the general approach by introducing models with articulations.

Several researchers have attempted to use 3-D models to track flexible objects such

as people. O’Rourke and Badler [74], and Hogg [45] have built systems that predict

poses and hence feature positions to estimate the position and pose of people in image

sequences. Poses and positions are determined by searching for configurations that

are consistent with measured features. O’Rourke and Badler [74], use distinctive

features such as hands and feet as the basis for pose determination, while Hogg [45]

uses edge correspondences and image differencing as initial information.

These approaches assume a previously known object model, limiting their use to

problems in which a fixed class of objects are to be tracked. Since object models are

either rigid or assume limited articulation, only restricted classes of objects can be

tracked. The search involved in determining the pose of multiply articulated objects

such as people tends to make analysis extremely costly.

Building up 3-D models by tracking individual features promises to avoid the prob-

lem of a previously specified, fixed class of known objects. Roach and Aggarwal [80]

use heuristics to generate wire frame models of objects in each scene, and attempt to

determine a correspondence between models from image to image. Crowley et al. [28]

CHAPTER 6. MOTION TRACKING 113

track edge segments from frame to frame in order to build up an object model across

time. Although these systems seem to track previously unspecified objects, the work

tends to assume that the objects are easily separable from the background, and is

limited to rigid objects.

6.3.2 Special-purpose tracking

If some distinctive property of an object is known, e.g., that it has a plume that

will appear in a specified frequency range, tracking can be performed by repeatedly

picking out the object manifesting the distinctive property. The key to success with

this class of algorithms is the existence of a robust mechanism for picking out the

object that is being tracked in each frame.

Gilbert et al. [38] describe a system used to keep a camera aimed at and focussed

on a plane or missile. The part of the system that keeps track of an object’s image

relative position relies on the assumption that “the target image has some video

intensities not contained in the immediate background.” It uses dynamically learned

gray-level distributions to pick out the object in each frame. Schalkoff and McVey [82]

propose a general architecture for tracking that relies upon being able to separate the

object to be tracked from the background in each frame. Horswill [48] uses significant

variation in gray-level intensity as a cue for picking out and tracking objects in his

prey-following robot. Andersson [8] relies on the contrast between a white ping-

pong ball and a dark background in the construction of his ping-pong playing robot.

Similarly, Yamauchi and Nelson [103] make use of black balloons against a light

background to implement a juggling robot.

6.3.3 Generic object tracking

Approaches to tracking that require neither a pre-specified object model nor contin-

uous separability tend to rely on local independent motion measurements to keep

track of the object. There are generally two cross-temporal goals to these algorithms:

maintaining correspondence and maintaining coherence. Maintaining correspondence

involves determining where each part of the object that is being tracked has gone

CHAPTER 6. MOTION TRACKING 114

to. Maintaining coherence of the representation of the object being tracked requires

dealing both with parts of the object that appear and disappear, and with errors in

maintaining correspondence.

Early work on tracking clouds [56, 86] dealt primarily with maintaining correspon-

dence; work consisted of computing correlation-based optical flow fields. Similarly,

Chien and Jones [26] although arguing in favor of the general idea of an object tracking

modularity, focus on the issue of tracking features across time.

Tsuji et al. [95] work on binarized cartoon imagery in tracking flexible objects.

Their technique relies on repeatable segmentation of the image into distinct semantic

units. Segmented regions are sought in each subsequent image to provide cross-

temporal tracking. In real imagery, repeatable, meaningful segmentation is extremely

difficult to achieve.

Kass and Witkin [53] use energy minimizing-splines, or snakes, to track moving

objects. The energy functional used for tracking with snakes incorporates both the

goal of maintaining correspondence and the goal of maintaining object coherence into

one equation. The approach relies on the existence of local energy minima at object

boundaries. If such minima do not exist or disappear, or if the object moves too far,

the tracked contour will diverge from the object.

Baker and Garvey [10], extending their work on constructing spatiotemporal sur-

faces, track independently moving objects on the constructed surfaces. This work has

the advantage that the spatiotemporal surfaces capture cross-temporal coherence in

the motion of image features. Only preliminary work has been done on working out

the correspondence between the space-time manifold and individual objects.

6.4 Discussion

Tracking is a useful visual modularity for systems that must function in dynamic en-

vironments. Most tracking research has assumed the existence of an object model, or

the existence of some simple, repeatable object segmentation technique. The tracking

algorithm described in this chapter provides tracking that is not object specific.

The algorithm has two phases: projection through the optical flow field which

CHAPTER 6. MOTION TRACKING 115

maintains correspondence from frame to frame, and adjustment to motion boundaries

which maintains the coherence of the tracked object. Figures 6.9, and 6.10 show the

results of these two phases on actual images. The upper left frame in Figure 6.9

shows the outline of an input boolean object. A rectified flow field is shown in the

upper right. The lower left of Figure 6.9 shows the results of projection through the

rectified flow field. The lower right shows the results of filling holes in the projected

patch.

Figure 6.10 shows the effects of adjustment. In the upper left hand corner, discon-

tinuities in the rectified flow field M i+1 are overlaid on O2
i+1, the result of projection

and smoothing. The upper right hand frame shows the same discontinuities overlaid

on image I i+1. The lower left hand frame shows the discontinuities overlaid on the

adjusted patch. The lower right hand frame shows the outline of the adjusted object

on image I i+1.

CHAPTER 6. MOTION TRACKING 116

Input tracked object (Oi) Rectified flow field (M i)

Unsmoothed projected object (O1
i+1) Smoothed projected object (O2

i+1)

Figure 6.9: Projection in action

CHAPTER 6. MOTION TRACKING 117

Flow discontinuities over projected patch Flow discontinuities over image

Flow discontinuities over adjusted patch Adjusted patch (Oi+1)

Figure 6.10: Adjustment in action

Chapter 7

Conclusion

This thesis has explored the problems of vision for robots in dynamic, unstructured

environments. Exploring vision problems with a general class of tasks in mind has led

to a non-traditional approach to vision research in which usability and computational

efficiency take precedence over purity of results.

The thesis introduces the idea of vision services as an approach to building vision

systems for robots in dynamic, unstructured environments. A vision service must

summarize camera data in a way that directly supports action; it must be able to

function without prior knowledge of a particular environment or the kinds of objects

that appear in it; and it must be able to continue to provide useful summarizations

without constant guidance.

A system that picks out and tracks moving objects is described. The system is

shown to be an example of a vision service in that it continually provides object-

position information without recourse to prior information or external guidance.

Since vision services operate in real-time and are suitable for directly controlling

action, they permit immediate empirical validation, but make analytic validation

difficult.

As vision services need to report on events in the world in an immediately usable

fashion, the issue of how to simply characterize a scene comes to the fore. To a degree,

the task of designing vision services is an exercise in practical reification. A vision

service must be able to carve the perceived world into a small number of elements

118

CHAPTER 7. CONCLUSION 119

such that descriptions in terms of these elements are useful for action.

Carving up the visual world on the basis of distinct visual motion is one instance

of such a practical reification scheme. It appears that scene depth as computed

from stereo imagery can be the basis for other approaches to usefully individuating

scene elements in an unstructured environment. Other visual modalities such as

color or texture may require more domain dependent information in order to support

reification.

7.1 Lessons

The principal, unexpected lesson from this work is the benefit of adhering to uni-

form representations and uniform computation. One advantage is the computational

benefit achieved from shared local computations. Another advantage is the implemen-

tational benefit arising from the fact that uniform algorithms operating on uniformly

represented data end up being intrinsically simple.

Another, perhaps obvious, lesson is that attempting to build systems that work

on real images uncovers many lurking issues. An example of such an issue is the

motion aliasing problem discussed in Section 4.4.1 that appears unrecognized in the

vision literature.

7.2 Complexity

If the proposal that researchers ought to implement vision services that can be

coupled to effectors is taken seriously, then the computational complexity of dif-

ferent vision techniques becomes of prime importance. To this end, the complex-

ity of the various algorithms described throughout the thesis are summarized be-

low. Recall that the definitions of various symbols are summarized in Appendix A.

CHAPTER 7. CONCLUSION 120

Computation:

Phase Serial Parallel

Initial estimate O(6|D|N2) O(6|D|)
Mode filter O((3|D| + 1)N2) O((2 lg dm + 1)|D| − 1)

Rectification O(3N2) —

Segmentation O((2ns + 2)N2 + (3dg + lg |T|)|T|) O(2ns + 2 + (3dg lg |T|)|T|)
Projection O(6N2) O(2 lg dp)

Adjustment O((6da + 4)N2) O(2 lg |D| + 3d2
a)

Average case 22N2 —

Communication:

Phase Hypercube Non-hypercube

Initial estimate O(lg |D| + 3) —

Mode filter O(2 lg dm|D|) —

Rectification — O(2)

Segmentation — O(ns + 1)

Projection O(2 lg dp) O(1)

Adjustment O(2 + 2 lg da) —

7.3 Open issues and limitations

Many issues are left open by this work. At a broad level, there is the question

of whether the idea of vision services will allow additional progress to be made in

machine vision. What services can be defined that are both useful and workable?

The presented segmentation and tracking techniques work well for rotations about

the x and y axes of the camera. Will these techniques work for more general camera

motions? If not, what techniques will?

The presented optical flow algorithm has limits on velocities that are too great,

and velocities that are too small. What techniques will allow large motions to be

measured? Can the approach be extended to subpixel motions?

The problem of motion aliasing discussed in Section 4.4.1 has been worked around

in the current system. What general approaches could be taken to avoid the problem?

CHAPTER 7. CONCLUSION 121

7.4 Future work

Cheap, general purpose computers are only now becoming powerful enough to perform

real-time motion and stereo depth computations. The time is ripe for explorations in

the space of vision services that couple cameras and effectors in real environments.

The notion of vision services must be tested by introducing vision services that

are suitable for navigation and object manipulation in dynamic, unstructured envi-

ronments. Various combinations of depth and motion measurements can be the basis

for such vision services.

7.5 Summary of contributions

The contributions of this thesis include several algorithms to support an optical flow-

based tracking system, an approach to building vision systems for dynamic, unstruc-

tured environments, and several implemented systems that validate the algorithms

and indicate the power of the approach.

The thesis introduced a tracking algorithm that makes use of optical flow to keep

track of unmodeled, non-rigid moving objects across time. An algorithm for picking

out moving objects on the basis of clustered cross-temporal behavior was presented. A

novel, efficient, optical flow computation based on SSD correlation and mode filtering

was described. The performance of these algorithms was analyzed in detail to allow

comparison with other methods.

The idea of vision services as a model for vision systems that are to be used in

dynamic, unstructured domains was introduced, and shown to subsume the tracking

system. The tracking service and its component vision algorithms have been validated

with two real-time robotic camera pursuit systems.

By introducing a real-time, optical flow-based tracking system, this thesis has

demonstrated that optical flow can be a practical visual modality for real-time systems

in dynamic, and unstructured environments.

Appendix A

Special notation and constants

A.1 Special notation

Symbol Denotation Page

⊗ the operator used in dynamic programming 30

B the set of boolean images 22

da the diameter of the local adjustment region 101

dc the diameter of the correlation window 54

dg the width of the Gaussian mask used in segmentation 88

dm the diameter of the mode filter 62

dp the diameter of the clean up region in projection 95

D the set of displacements 27

fovh the horizontal field of view 23

fovv the vertical field of view 23

C the set of connected components of motion 97

Cl(p) a local version of a component 101

C= local component based on equality 101

Cr local component based on radial connectedness 104

122

APPENDIX A. SPECIAL NOTATION AND CONSTANTS 123

Symbol Denotation Page

Hi(v, ns) the histogram of trajectories 84

I a single gray-level image 22

I the set of gray-level images 22

L(p) the likelihood of given motion estimate 64

M̃ a motion field, representing true motion 26

M the set of optical flow fields 27

M an optical flow field approximating the motion field 27

M a rectified optical flow field 64

M∗ the initial measurement of motion 50

M∗ the set of multivalued optical flow fields 50

na number of distinct motions in adjustment column 103

ns the number of flow fields used for segmentation 83

N the height and width of an image 28

Õ a boolean image representing an object 27

O an approximation to Õ 27

P the set of pixels 22

Pi(p, k) the k-th predecessor 83

Qi the partition of trajectory vectors 84

ra the radius of the local adjustment region 105

rm the radius of the mode filter region 58

rv the radius of the search window 51

R(p) the da × da square surrounding p 100

Si the result of motion segmentation 85

σ the result of applying ⊗ to a local area 30

supf S the element of S for which f is greatest 28

Ti(p, k) a field of trajectories 83

T the set of trajectories used in segmentation 84

APPENDIX A. SPECIAL NOTATION AND CONSTANTS 124

A.2 Constants

|D| = 37

da = 15

dg = 9

dm = 7 in serial, 8 in parallel

dp = 7 in serial, 8 in parallel

fovh = 38◦

fovv = 30◦

na ≈ 3

no = 2

ns = 4

N = 128 in parallel, 128 and 114 in serial

ra = 7

rm = 3

Appendix B

Local dynamic programming

As mentioned in Section 2.7 many of the operations used in the tracking system in-

volve uniform local computations in the area surrounding each pixel. These operations

are often amenable to a decomposition into subproblems such that partial results can

be cached and shared across pixels, in a form of dynamic programming. Significant

computational savings are achieved through these local area dynamic programming

techniques.

These dynamic programming techniques can be applied if the desired local result

at each pixel is the application of a group operation ⊗ from a group 〈G,⊗, e, −1〉 to

a rectangular local area surrounding each pixel in a matrix of elements of G. Let F

be such a two-dimensional matrix of elements of G. The origin is in the upper left, x

coordinates run left to right, and y coordinates run top to bottom. Let σ(x, w, y, h)

denote the result of applying ⊗ to the local area of width w and height h whose lower

right hand corner is pixel 〈x, y〉1.

σ(x, w, y, h) ≡
⊗

[x−w<i≤x]

⊗

[y−h<j≤y]

F (i, j)

The symbol “
⊗

” denotes the ordered application of ⊗ to the local area, much as “
∑

”

denotes the application of +. The degenerate case of width and height 1, picks out

1In Section 2.7, σ(p, w, h) denoted the local summary centered around p. In this appendix,
σ(x, w, y, h) denotes a local summary picked out by its lower right hand corner. The two notations
are related as follows: σ(x, w, y, h) = σ(〈x − ⌈w

2
⌉, y − ⌈h

2
⌉〉,w,h).

125

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 126

an element of F .

σ(x, 1, y, 1) ≡ F (x, y)

The application of ⊗ to a column of height h can be written as a region of width 1.

σ(x, 1, y, h) ≡
⊗

[y−h<j≤y]

F (x, j)

As noted in Section 2.7, if ⊗ is an operation whose output is larger than its input,

e.g., addition on the natural numbers, there is a logarithmic complexity term related

to the size of the output. However, for reasonably sized local areas, this logarithmic

factor stays below the word size of a machine, and is ignored.

B.1 Serial dynamic programming

Computing the desired result, σ(x, w, y, h), in serial is performed in some fixed order:

assume top to bottom, left to right. The aim of dynamic programming is to decompose

the problem into partial results that can be shared. The left hand side of Figure B.1

shows such a decomposition where + instantiates ⊗. The lower left square depicts

the local area of the desired result. The upper left square depicts the local area of

the result for the previous pixel (the pixel directly to the left of the current pixel).

The center left square shows that the desired area can be generated from the previous

result by removing a column from the left and appending a column on the right. As

shown in the figure, the local aggregation for a pixel 〈x, y〉 can be decomposed into

the product of three terms: the complete result for the neighboring pixel to the left

〈x−1, y〉, σ(x−1, w, y, h), and two partial results in the form of columns, the leftmost

column of σ(x− 1, w, y, h), that is σ(x− w, 1, y, h); and the rightmost column of the

desired result σ(x, w, y, h), namely, σ(x, 1, y, h).

σ(x, w, y, h) ≡ σ(x − 1, w, y, h)⊗ σ(x − w, 1, y, h)−1 ⊗ σ(x, 1, y, h)

The right hand side of Figure B.1 shows a similar decomposition for a single pixel

wide column. Each column can be decomposed into the product of three terms: the

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 127

�
���

σ(x, w, y, h)

�
�	

(x, y)

− +

@
@R

σ(x − w, 1, y, h)

�
�	

σ(x, 1, y, h)

�
�	

(x, y)

@
@R

σ(x − 1, w, y, h)

�
�	

(x, y)

@
@@I

σ(x, 1, y, h)

+

−

@@I

��	

F (x, y)

F (x, y − h)

@
@@I

σ(x, 1, y − 1, h)

Figure B.1: Dynamic programming a local sum in serial

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 128

column from the previous row, and two of the basic elements from the matrix F , the

top element of the old column, and the bottom element of the new column.

σ(x, 1, y, h) ≡ σ(x, 1, y − 1, h) ⊗ F (x, y − h)−1 ⊗ F (x, y)

Given this decomposition, as long as enough previous results have been preserved,

the result for a local area of arbitrary size can be computed with four ⊗ operations

per pixel. Two operations are needed to compute the right column of a new area, and

two operations are needed to combine the left column, the old result and the right

column. Applying ⊗ to a w × h area at each pixel on an N × N image takes

O(4N2)

applications of ⊗.

As noted in Section 2.7, there is a certain fixed overhead that occurs at the edges

of the matrix F . This overhead is not included in the complexity figures, as it is

independent of image size. However, if the serial computation were split across many

serial processors, this overhead could become significant. In the extreme, running the

serial algorithm on each processor of the Connection Machine would incur a great

deal of communication and would cost O(wh) ⊗ operations per pixel.

B.2 SIMD dynamic programming

It is assumed that the matrix F of basic values that are being aggregated is dis-

tributed across processors, so that each processor is associated with one coordinate

〈x, y〉 and one value of F (x, y). On a SIMD computer, results are completed si-

multaneously on all processors, hence decomposition techniques that depend on a

neighboring processor’s final results cannot be used. Instead, one can use a binary

recursive decomposition of partial results.

Consider summing numbers over a local area. Initially, a processor only has its

local input F (x, y). By fetching a neighbor’s value, and adding it to the initial value,

each processor has the sum of a one by two area. By fetching a new sum from a

neighbor on the other axis and adding it, each processor has the sum of a two by

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 129

two area. This process can be repeated until the desired sum is available at each

processor.

For simplicity, assume that the width w and height h of local regions are powers

of two. The aggregation for a region can thus be written recursively.

σ(x, 1, y, 1) ≡ F (x, y)

σ(x, w, y, h) ≡ σ(
x − w

2
,
w

2
, y, h) ⊗ σ(x,

w

2
, y, h)

σ(x, w, y, h) ≡ σ(x, w,
y − h

2
,
h

2
) ⊗ σ(x, w, y,

h

2
)

For SIMD processing, one needs to consider where each partial result should be gen-

erated. In particular, it is important that the final result for a local area end up on

the processor that corresponds to the center of the local area. Processor 〈x, y〉 thus

ought to end up with the value σ(x+w
2

, w, y+h

2
, h). Figure B.2 depicts the generation

of σ(x + 4, 8, y, h) on processor 〈x, y〉, starting from the column result σ(x, 1, y, h).

Since the area being worked on doubles at each step, the local aggregation of

a rectangular region of width w and height h can be computed with lg w + lg h ⊗
operations per pixel. For an N ×N image, ⊗ can be computed over the whole image

in

O((lg w + lg h)N2)

applications of ⊗. Since the communications depicted in Figure B.2 are all of power

of two distances, the local aggregation can be performed with lg w + lg h hypercube

communications.

An interesting example of this parallel dynamic programming involves the use of

concatenation. Many algorithms require values from all neighboring processors in

some local region of width w and height h. To transmit each value independently

would require wh uniform point to point communications, and still more hypercube

communications. Using the above decomposition, the number of communications can

be reduced to lg w + lg h.

This binary recursive version of the dynamic programming technique makes no use

of the inverse, −1, and can hence be performed for a monoid operation. The recursive

dynamic programming technique can be used on serial computers to compute an

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 130

σ(x + 4, 8, y, h)

⊗f)

�e)

σ(x, 4, y, h) σ(x + 4, 4, y, h)

⊗d)

-c)

σ(x − 2, 2, y, h) σ(x, 2, y, h)

⊗b)

-a)

σ(x − 1, 1, y, h)σ(x, 1, y, h)

u u u u
〈x − 2, y〉 〈x − 1, y〉 〈x, y〉 〈x + 4, y〉

Black dots denote processors along the x axis. The dot labeled 〈x, y〉 is the processor
whose result is being considered. Arrows indicate the transmission of partial results
from neighboring processors.
Step (a) fetch a value σ(x − 1, 1, y, h) from processor on left 〈x − 1, y〉.
Step (b) apply ⊗ to σ(x − 1, 1, y, h) and σ(x, 1, y, h) to form σ(x, 2, y, h).
Step (c) fetch a pair from processor at distance two.
Step (d) apply ⊗ to σ(x − 2, 2, y, h) and σ(x, 2, y, h) to form σ(x, 4, y, h).
Step (e) fetch a quadruple from processor at distance four.
Step (f) apply ⊗ to σ(x, 4, y, h) and σ(x + 4, 4, y, h) to form σ(x + 4, 8, y, h).

Figure B.2: Dynamic programming ⊗ in parallel

APPENDIX B. LOCAL DYNAMIC PROGRAMMING 131

aggregation of a monoid operation without an inverse, e.g., max. The number of

computations done in serial is the same as in parallel, but no communication is

required.

Appendix C

Motion and tracking algorithms in

LISP

This LISP pseudo-code presents the motion and tracking algorithms specified in Chap-

ter 4 and Chapter 6 in procedural form. The code is only intended to specify the

desired results of the computation. The given procedures are not the dynamically pro-

grammed algorithms whose performance is analyzed. Most of the procedures ignore

boundary conditions. The motion algorithm is followed by the tracking algorithm.

C.1 Motion algorithm

The motion algorithm takes as input two images and produces an optical flow field.

(defun compute-motion (i1 i2 optical-flow-field)

(declare

(type image i1 i2)

(type flow-field optical-flow-field))

(let (initial-flow-field votes-field filtered-flow-field)

(declare

(type flow-field initial-flow-field filtered-flow-field)

(type votes-field votes-field))

(compute-initial-motion-measurement i1 i2 initial-flow-field)

(mode-filter initial-flow-field filtered-flow-field votes-field)

(rectify filtered-flow-field votes-field optical-flow-field)))

132

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 133

The flow field produced by compute-initial-estimates can have multiple dis-

placements for a single pixel, since ties can occur. Thus the resulting flow field is a

matrix of lists of displacements.

(defun compute-initial-estimates (i1 i2 initial-flow-field)

(declare

(type image i1 i2)

(type flow-field initial-flow-field))

(dotimes (y (array-dimension i1 1))

(dotimes (x (array-dimension i1 0))

(setf (aref result x y)

(initial-estimates i1 i2 x y)))))

(defvar *displacements* ’((-2 2) (-1 2) ... (0 0) ... (2 2)))

(defun displacement-x (displacement)

(first displacement))

(defun displacement-y (displacement)

(second displacement))

(defun initial-estimates (i1 i2 x y)

(declare

(type image i1 i2)

(type fixnum x y))

(let* ((best-displacements (list (first *displacements*)))

(least-ssd-score (ssd-score i1 i2 x y (first best-displacements))))

(dolist (displacement (cdr *displacements*))

(let ((ssd-score (ssd-score i1 i2 x y displacement))

(cond ((< ssd-score least-ssd-score)

(setq best-displacements (list displacement))

(setq least-ssd-score ssd-score))

;; a tie

((= ssd-score least-ssd-score)

(push displacement best-displacements))))))

(return-from initial-estimates best-displacements)))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 134

(defun ssd-score (i1 i2 x y displacement)

(let ((sum-of-squared-differences 0))

(loop for (xx yy) in ’((0 -1) (-1 0) (0 0) (1 0) (0 1)) do

(let* ((old-pixel (aref i1 (+ x xx) (+ y yy)))

(new-pixel (aref i2

(+ x xx (displacement-x displacement))

(+ y yy (displacement-y displacement))))

(difference (- old-pixel new-pixel))

(squared-difference (* difference difference)))

(setq sum-of-squared-differences

(+ sum-of-squared-differences squared-difference))))

(return-from ssd-score sum-of-squared-differences)))

(defvar *mode-filter-radius* 3)

(defun mode-filter (initial-flow-field filtered-flow-field votes-field)

(declare

(type flow-field initial-flow-field filtered-flow-field)

(type votes-field votes-field))

(dotimes (y (array-dimension initial-flow-field 1))

(dotimes (x (array-dimension initial-flow-field 0))

(multiple-value-bind (displacement votes)

(mode-filter-one-pixel initial-flow-field x y)

(setf (aref filtered-flow-field y) displacement)

(setf (aref votes-field x y) votes)))))

(defun mode-filter-one-pixel (initial-flow-field x y)

(declare

(values best-displacement most-votes))

(let* ((best-displacements (list (first *displacements*)))

(most-votes (count-votes (first best-displacement) initial-flow-field x y)))

(dolist (displacement (cdr *displacements*))

(let ((vote-count (count-votes displacement initial-flow-field x y)))

(cond ((> vote-count most-votes)

(setq best-displacements (list displacement))

(setq most-votes vote-count))

;; a tie

((= vote-count most-votes)

(push displacement best-displacements)))))

(return-from mode-filter-one-pixel

(values (choose-random-element best-displacements)

most-votes))))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 135

(defun count-votes (displacement initial-flow-field x y)

(let ((vote-count 0))

(loop for yy from (- *mode-filter-radius*) to *mode-filter-radius* do

(loop for xx from (- *mode-filter-radius*) to *mode-filter-radius* do

(when (member displacement

(aref initial-estimate (+ x xx) (+ y yy)))

(setq vote-count (+ vote-count 1)))))

(return-from count-votes vote-count)))

(defun rectify (filtered-flow-field votes-field surjective-optical-flow-field)

(declare

(type flow-field filtered-flow-field surjective-optical-flow-field)

(type votes-field votes-field))

(let (temp-dest-array)

(setq temp-dest-array (make-array (array-dimensions filtered-flow-field)))

(initialize-nil surjective-optical-flow-field)

(initialize-nil temp-dest-array)

(dotimes (y (array-dimension filtered-flow-field 1))

(dotimes (x (array-dimension filtered-flow-field 0))

(let ((displacement (aref filtered-flow-field x y))

(vote-count (aref votes-field x y)))

(push (make-competitor :vote-count vote-count :source-x x :source-y y)

(aref temp-dest-array

(+ x (displacement-x displacement))

(+ y (displacement-y displacement)))))))

;;

;; temp-dest-array now contains at each pixel, a list of

;; entries corresponding to all pixels that think they were

;; displaced to this pixel.

;;

(dotimes (y (array-dimension filtered-flow-field 1))

(dotimes (x (array-dimension filtered-flow-field 0))

(let ((competitors (aref temp-dest-array x y)))

(when competitors

(let ((winner (choose-one-best-scoring-competitor competitors)))

(setf (aref surjective-optical-flow-field

(competitor-source-x winner)

(competitor-source-y winner))

(aref filtered-flow-field

(competitor-source-x winner)

(competitor-source-y winner))))))))))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 136

(defun choose-one-best-scoring-competitor (competitors)

(let* ((first-competitor (first competitors))

(best-competitors (list first-competitor))

(most-votes (competitor-votes first-competitor)))

(dolist (competitor (cdr competitors))

(let ((vote-count (competitor-votes competitor)))

(cond ((> vote-count most-votes)

(setq most-votes vote-count)

(setq best-competitors (list competitor)))

;; a tiel

((= vote-count most-votes)

(push competitor best-competitors)))))

(let ((winner (choose-random-element best-competitors)))

(return-from choose-one-best-scoring-competitor winner))))

C.2 Tracking algorithm

The tracking algorithm takes a boolean image representing a tracked object, and two

surjective flow fields as input and produces a new boolean image representing the new

position of the object. Boolean images can represent one of three values per pixel: 0,

1, or nil.

(defun track (input-object-map first-flow-field second-flow-field output-object-map)

(declare

(type object-map input-object-map output-object-map)

(type flow-field first-flow-field second-flow-field))

(let (intermediate-object-map)

(declare

(type object-map intermediate-object-map))

(project input-object-map first-flow-field intermediate-object-map)

(adjust intermediate-object-map second-flow-field output-object-map)))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 137

(defvar *projection-smooth-diameter* 7)

(defun project (input-object-map surjective-flow-field output-object-map)

(declare

(type object-map input-object-map output-object-map)

(type flow-field surjective-flow-field))

(let (intermediate-object-map)

(declare

(type object-map intermediate-object-map))

(initialize-nil intermediate-object-map)

(dotimes (y (array-dimension input-object-map 1))

(dotimes (x (array-dimension input-object-map 0))

(let ((displacement (aref surjective-flow-field x y))

(object? (aref input-object-map x y)))

(when displacement

(setf (aref intermediate-object-map

(+ x (displacement-x displacement))

(+ y (displacement-y displacement)))

object?)))))

;;

;; intermediate-object-map now is nil only at pixels to

;; which no pixel is mapped by surjective-flow-field.

;;

(boolean-smooth intermediate-object-map *projection-smooth-diameter*

output-object-map)))

(defun boolean-smooth (input-object-map diameter output-object-map)

(declare

(type object-map input-object-map output-object-map)

(type fixnum diameter))

(let* ((lower-bound (floor (/ diameter 2)))

(upper-bound (- diameter lower-bound))

(half-area (/ (* diameter diameter) 2)))

(dotimes (y (array-dimension input-object-map 1))

(dotimes (x (array-dimension input-object-map 0))

(unless (numberp (aref input-object-map x y))

(let ((sum 0))

(loop for yy from (- lower-bound) to upper-bound do

(loop for xx from (- lower-bound) to upper-bound do

(setq sum (+ sum (down (aref input-object-map (+ x xx) (+ y yy)))))))

(setf (aref output-object-map x y) (> sum half-area))))))))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 138

Function down maps 0 and 1 to themselves and nil to 0.

(defun down (val)

(if (numberp val) val 0))

(defvar *adjustment-radius* 7)

(defun adjust (input-object-map optical-flow-field output-object-map)

(declare

(type object-map input-object-map output-object-map)

(type flow-field optical-flow-field))

(dotimes (y (array-dimension input-object-map 1))

(dotimes (x (array-dimension input-object-map 0))

(setf (aref output-object-map x y)

(adjust-one-pixel input-object-map optical-flow-field x y)))))

(defun adjust-one-pixel (input-object-map optical-flow-field x y)

(declare

(type object-map input-object-map)

(type flow-field optical-flow-field))

(let ((same-component

(make-array (list (+ *adjustment-radius* 1 *adjustment-radius*)

(+ *adjustment-radius* 1 *adjustment-radius*))))

(same-component-count 0)

(same-component-and-tracked-count 0)

ratio)

(compute-same-component optical-flow-field x y same-component)

(loop for xx from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(loop for yy from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(when (aref same-component (+ xx *adjustment-radius*)

(+ yy *adjustment-radius*))

(setq same-component-count (+ 1 same-component-count))

(when (aref input-object-map (+ x xx) (+ y yy))

(setq same-component-and-tracked-count

(+ 1 same-component-and-tracked-count))))))

(setq ratio (/ same-component-and-tracked-count same-component-count))

(return-from adjust-one-pixel (> ratio (/ 1 2)))))

The computation done by the procedure compute-same-component differs in the
SIMD and serial versions.

(defun compute-same-component (optical-flow-field x y same-component)

(if (not *SIMD*)

(locally-connected-same-component optical-flow-field x y same-component)

(locally-counting-same-component final-estimate x y same-component)))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 139

The non SIMD algorithm for computing a local component collects all pixels in the
local neighborhood that have the same displacement as the local pixel.

(defun locally-counting-same-component (final-estimate x y same-component)

(let ((my-displacement (aref final-estimate x y)))

(loop for xx from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(loop for yy from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(setf (aref same-component (+ xx *adjustment-radius*)

(+ yy *adjustment-radius*))

(equal (aref final-estimate (+ x xx) (+ y yy))

my-displacement))))))

The SIMD algorithm for computing a local component is fairly complex.

(defun locally-connected-same-component (optical-flow-field x y same-component)

(initialize-nil same-component)

;; center is by definition same component

(setf (aref same-component *adjustment-radius* *adjustment-radius*) t)

(let ((local-optical-flow-field

(make-array (list (+ *adjustment-radius* 1 *adjustment-radius*)

(+ *adjustment-radius* 1 *adjustment-radius*))))

;; copy final estimate into local

(copy-into-local optical-flow-field x y local-optical-flow-field)

(loop for radius from 1 below *adjustment-radius* do

(traverse-radially radius local-optical-flow-field same-component)

(traverse-laterally radius local-optical-flow-field same-component)))))

The procedure copy-into-local makes a local copy of a subregion of the optical
flow field.

(defun copy-into-local (optical-flow-field x y local-optical-flow-field)

(loop for xx from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(loop for yy from (- *adjustment-radius*) to (+ *adjustment-radius*) do

(setf (aref local-optical-flow-field (+ xx *adjustment-radius*)

(+ yy *adjustment-radius*))

(aref optical-flow-field (+ x xx) (+ yyy))))))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 140

(defun traverse-radially (radius local-optical-flow-field same-component)

(let ((copy-radius (- radius 1)))

(loop for sign in ’(1 -1) do

(let ((inner-x (* sign copy-radius))

(inner-y (* sign copy-radius)))

(loop for index from (- copy-radius) to (+ copy-radius) do

;; do the horizontal first

(possibly-move-to local-optical-flow-field

inner-x index sign 0 :radial)

;; do vertical next

(possibly-move-to local-optical-flow-field

index inner-y 0 sign :radial))))))

The procedure possibly-move-to tests whether the neighboring pixel specified by
x-diff and y-diff is reachable. If the pixel is reachable, it is labeled with the kind
of traversal that is being done, radial or lateral.

(defun possibly-move-to (local-optical-flow-field x y x-diff y-diff label)

(when (reachable local-optical-flow-field

x y (+ x x-diff) (+ y y-diff))

(setf (aref same-component (+ x x-diff) (+ y y-diff)) label)))

The function reachable tests whether two adjacent pixels have the same displacement
vector.

(defun reachable (local-optical-flow-field old-x old-y new-x new-y)

(equal (aref local-optical-flow-field old-x old-y)

(aref local-optical-flow-field new-x new-y)))

APPENDIX C. MOTION AND TRACKING ALGORITHMS IN LISP 141

The procedure traverse-laterally attempts to grow the local region outward along
a square of radius radius. It can only add cells that are adjacent to cells that were
added by the previous radial growth step and have the same displacement vector.

(defun traverse-laterally (radius local-optical-flow-field same-component)

(loop for sign in ’(1 -1) do

(let ((signed-radius (* radius sign)))

(loop for index from (- 1 radius) to (- radius 1) do

(loop for radial-sign in ’(1 -1) do

;; do horizontal first

(when (eq (aref same-component index signed-radius) :radial)

(unless (aref same-component (+ index radial-sign) signed-radius)

(possibly-move-to local-optical-flow-field

index signed-radius radial-sign 0

:lateral)))

;; do vertical next

(when (eq (aref same-component signed-radius index) :radial)

(unless (aref same-component signed-radius

(+ index radial-sign))

(possibly-move-to local-optical-flow-field

signed-radius index 0 radial-sign

:lateral))))))))

Bibliography

[1] Edward Adelson and James Bergen. The extraction of spatio-temporal energy

in human and machine vision. In IEEE Motion Workshop, pages 151–155, 1986.

[2] Gilad Adiv. Determining three-dimensional motion and structure from opti-

cal flow generated by several moving objects. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 7(4):384–401, July 1985.

[3] Philip Agre and David Chapman. Pengi: An implementation of a theory of

activity. In Proceedings of AAAI-87, 1987.

[4] Alfred Aho, John Hopcroft, and Jeffrey Ullman. Data Structures and Algo-

rithms. Addison–Wesley, 1983.

[5] John Aloimonos, Isaac Weiss, and Amit Bandopadhay. Active vision. Interna-

tional Journal of Computer Vision, 1:333–356, 1988.

[6] Padmanabhan Anandan. Measuring Visual Motion from Image Sequences. PhD

thesis, University of Massachusetts, Amherst, March 1987.

[7] Padmanabhan Anandan. A computational framework and an algorithm for

the measurement of visual motion. International Journal of Computer Vision,

2:283–310, 1989.

[8] Russell Andersson. A Robot Ping-Pong Player: An Experiment In Real-Time

Intelligent Control. MIT press, 1988.

[9] Ruzena Bajcsy. Active perception. Proceedings of IEEE, 76(8):996–1005, 1988.

142

BIBLIOGRAPHY 143

[10] Harlyn Baker and Tom Garvey. Motion tracking on the spatiotemporal surface.

In Image Understanding Workshop, pages 451–457, 1992.

[11] Dana Ballard. Animate vision. Artificial Intelligence, 48:57–86, 1991.

[12] Amit Bandopadhay. A Computational Study of Rigid Motion Perception. PhD

thesis, University of Rochester, 1986.

[13] Stephen Barnard and William Thompson. Disparity analysis of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2(4), 1980.

[14] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. Performance

of optical flow techniques. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 236–242, 1992.

[15] Michael Black and Padmanabhan Anandan. Constraints for the early detection

of discontinuity from motion. In Proceedings of AAAI-90, Boston, MA, pages

1060–1066, 1990.

[16] Claude Brice and Claude Fennema. Scene analysis using regions. Artificial

Intelligence, 1:205–226, 1970.

[17] Rod Brooks. Achieving artificial intelligence through building robots. AI Memo

899, MIT, May 1986.

[18] Rod Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, March 1986.

[19] Rod Brooks. Intelligence without reason. In Proceedings of IJCAI-91, Australia,

1991.

[20] Heinrich Bulthoff, James Little, and Tomaso Poggio. A parallel algorithm for

real-time computation of optical flow. Nature, 337:549–553, 1989.

[21] Peter Burt, James Bergen, Rajesh Hingorani, R. Kolczynski, W. Lee, A. Le-

ung, J. Lubin, and H. Shvaytser. Object tracking with a moving camera. In

Proceedings of IEEE Workshop on Visual Motion, pages 2–12, 1989.

BIBLIOGRAPHY 144

[22] Peter Burt, Tsai-Hong Hong, and Azriel Rosenfeld. Segmentation and estima-

tion of image region properties through cooperative hierarchical computation.

IEEE Transactions on Systems, Man, and Cybernetics, 11(12), 1981.

[23] Peter Burt, Chihsung Yen, and Xinping Xu. Local correlation measures for mo-

tion analysis, a comparative study. In Proceedings of IEEE Pattern Recognition

and Image Processing Conference, pages 269–274, 1982.

[24] Peter Burt, Chihsung Yen, and Xinping Xu. Multi-resolution flow-through

motion analysis. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pages 246–252, 1983.

[25] David Chapman. Vision, Instruction and Action. PhD thesis, MIT, 1990.

[26] R. Chien and V. Jones. Acquisition of moving objects and hand-eye coordina-

tion. In Proceedings of IJCAI-75, pages 737–741, 1975.

[27] Guy Coleman and Harry Andrews. Image segmentation by clustering. Proceed-

ings of the IEEE, 67:773–785, 1979.

[28] James Crowley, Patrick Stelmaszyk, Thomas Skordas, and Pierre Puget. Mea-

surement and integration of 3-d structures byte tracking edge lines. Interna-

tional Journal of Computer Vision, 1992.

[29] R. Cypher, J. Sanz, and L. Snyder. Algorithms for image component label-

ing on SIMD mesh-connected computers. IEEE Transactions on Computers,

39(2):276–281, February 1990.

[30] E. Davies. On the noise suppression and image enhancement characteristics of

the median, truncated median, and mode filters. Pattern Recognition Letters,

7:87–97, 1988.

[31] E. Davies. Machine Vision. Academic Press, 1990.

[32] Rene Descartes. Meditations on First Philosophy. Bobbs-Merrill, 1960.

BIBLIOGRAPHY 145

[33] Claude Fennema and William Thompson. Velocity determination in scenes

containing several moving objects. Computer Graphics and Image Processing,

9:301–315, 1979.

[34] David Fleet and Allan Jepson. Computation of component image velocity from

local phase information. International Journal of Computer Vision, 5(1):77–

104, 1990.

[35] Anita Flynn and Rod Brooks. Building robots: Expectations and experiences.

In Proceedings of the IEEE International Robotics and Systems Conference,

Tsukuba, Japan, September 1989.

[36] Edouard François and Patrick Bouthemy. Multiframe-based identification of

mobile components of a scene with a moving camera. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 166–172, 1991.

[37] Donald Gennery. Tracking known three-dimensional objects. In Proceedings of

AAAI-82, Pittsburgh, PA, pages 13–17, 1982.

[38] A. Gilbert, M. Giles, G. Flachs, R. Rogers, and Y. U. A real-time video track-

ing system. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2(1):47–56, January 1980.

[39] Frank Glazer. Hierarchical Motion Detection. PhD thesis, University of Mas-

sachusetts, Amherst, February 1987.

[40] A. Guzman. Decomposition of a visual scene into three-dimensional objects

in a visual scene. In AFIPS Fall Joint Conference, volume 33, pages 291–304,

1968.

[41] Robert Haralick and Linda Shapiro. Image segmentation techniques. Computer

Vision, Graphics, and Image Processing, 29:100–132, 1985.

[42] David Heeger. Optical flow using spatiotemporal filters. International Journal

of Computer Vision, pages 279–302, 1988.

BIBLIOGRAPHY 146

[43] Ellen Hildreth. The Measurement of Visual Motion. MIT Press, 1983.

[44] Daniel Hillis. The Connection Machine. The MIT Press, 1985.

[45] David Hogg. Model-based vision: a program to see a walking person. Image

and vision computing, 1(1):5 – 20, February 1983.

[46] Berthold Horn. Robot Vision. The MIT Press, 1986.

[47] Berthold Horn and Brian Schunk. Determining optical flow. Artificial Intelli-

gence, 17:185–203, 1981.

[48] Ian Horswill. Reactive navigation for mobile robots. Master’s thesis, MIT, May

1988.

[49] Andres Huertas and Gerard Medioni. Detection of intensity changes with sub-

pixel accuracy using laplacian-gaussian masks. Transactions on Pattern Anal-

ysis and Machine Intelligence, 8(5), September 1986.

[50] Ramesh Jain, W. Martin, and J. Aggarwal. Segmentation through the detection

of changes due to motion. Computer Graphics and Image Processing, 11:13–34,

1979.

[51] Takeo Kanade. Region segmentation: Signal vs semantics. Computer Graphics

and Image Processing, 13(4):279–297, 1980.

[52] Michael Kass. Computing visual correspondence. In Alex Pentland, editor,

From Pixels to Predicates, pages 78–92. Ablex, 1986.

[53] Michael Kass, Andrew Witkin, and Dmitri Terzopolous. Snakes: Active con-

tour models for machine vision. In Proceedings of International Conference on

Computer Vision, pages 259–268. IEEE, 1987.

[54] Joseph Kearney, William Thompson, and Daniel Boley. Optical flow estimation:

An error analysis of gradient-based methods with local optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 229–244,

1987.

BIBLIOGRAPHY 147

[55] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1), 1986.

[56] John Leese, Charles Novak, and Ray Taylor. The determination of cloud pattern

motions from geosynchronous satellite image data. Pattern Recognition, 2:279–

292, 1970.

[57] Richard Legault. The aliasing problems in two-dimensional sampled imagery. In

Lucien Biberman, editor, Perception of Displayed Information. Plenum Press,

1973.

[58] James Little, Heinrich Bulthoff, and Tomaso Poggio. Parallel optical flow using

local voting. In Proceedings of International Conference on Computer Vision,

pages 454–459, 1988.

[59] James Little and Alessandro Verri. Analysis of differential and matching meth-

ods for optical flow. In IEEE Motion Workshop, pages 173–180, 1989.

[60] David Lowe. Integrated treatment of matching and measurement errors for

robust model-based motion tracking. In Proceedings of International Conference

on Computer Vision, pages 436–440, 1990.

[61] Bruce Lucas and Takeo Kanade. An iterative image registration technique with

an application to stereo vision. In DARPA Image Understanding Workshop,

pages 121–130, 1981.

[62] James Mahoney. Exhaustive hierarchical computations for labeling every pixel

in a binary image with topology and geometry across scales. Technical report,

Xerox PARC, 1990.

[63] Greil Marcus. LIPSTICK TRACES: A Secret History of the Twentieth Century.

Harvard University Press, 1989.

[64] David Marr. Vision. W. H. Freeman and Company, New York, 1982.

BIBLIOGRAPHY 148

[65] John McCarthy and Patrick Hayes. Some philosophical problems from the

standpoint of artificial intelligence. In Machine Intelligence, volume 4, pages

463–502. Edinburgh University Press, 1969.

[66] Hans Moravec. Towards automatic visual obstacle avoidance. In Proceedings of

IJCAI-77, page 584, 1977.

[67] David Murray and Bernard Buxton. Scene segmentation from visual motion

using global optimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9(2), 1987.

[68] Kathleen Mutch and William Thompson. Analysis of accretion and deletion at

boundaries in dynamic scenes. In W. Richards, editor, Natural Computation,

pages 44–54. The MIT Press, 1988.

[69] Hans-Hellmut Nagel. Displacement vectors derived from second-order intensity

variations in image sequences. Computer Vision, Graphics, and Image Process-

ing, 21:85–117, 1983.

[70] Randal Nelson. Qualitative detection of motion by a moving observer. Technical

Report 341, Computer Science Department, University of Rochester, April 1990.

[71] Keith Nishihara. Prism: a practical real-time image stereo matcher. AIM 780,

MIT, May 1984.

[72] Ron Ohlander, Keith Price, and Raj Reddy. Picture segmentation using a

recursive region splitting method. Computer Graphics and Image Processing,

8(3):313–333, 1978.

[73] Masatoshi Okutomi and Takeo Kanade. A locally adaptive window for signal

matching. In Proceedings of International Conference on Computer Vision,

pages 190–199, 1990.

[74] Joseph O’Rourke and Norman Badler. Model-based image analysis of human

motion using constraint propagation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2(6):522–536, 1980.

BIBLIOGRAPHY 149

[75] Shmuel Peleg and Hillel Rom. Motion based segmentation. In International

Conference on Pattern Recognition, pages 109–113, 1990.

[76] Jerry Potter. Scene segmentation using motion information. Computer Graphics

and Image Processing, 6:558–581, 1977.

[77] William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Nu-

merical Recipes in C. Cambridge University Press, 1988.

[78] Zenon Pylyshyn and Ron Storm. Tracking multiple independent targets: Evi-

dence for a parallel tracking mechanism. Spatial Vision, 3(3):179–197, 1988.

[79] Willard Van Orman Quine. Things and their place in theories. In Theories and

Things. The Belknap Press, 1981.

[80] J. Roach and J. Aggarwal. Computer tracking of objects moving in space. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1(2):127–135, 1979.

[81] Azriel Rosenfeld and Avinash Kak. Digital Picture Processing. Academic Press,

2nd edition, 1981,1982.

[82] R. Schalkoff and E. McVey. A model and tracking algorithm for a class of video

targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(1),

1982.

[83] Akio Shio and Jack Sklansky. Segmentation of people in motion. In Proceedings

of IEEE Workshop on Visual Motion, pages 325–332, 1991.

[84] Eero Simoncelli, Edward Adelson, and David Heeger. Probability distributions

of optical flow. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pages 310–315, 1991.

[85] Ajit Singh. Optic Flow Computation. IEEE Computer Society Press, 1991.

[86] Eric Smith and Dennis Phillips. Automated cloud tracking using precisely

aligned digital ATS pictures. IEEE Transactions on Computers, 21(7):715–729,

July 1972.

BIBLIOGRAPHY 150

[87] Anselm Spoerri and Shimon Ullman. The early detection of motion boundaries.

In International Conference on Computer Vision, pages 209–218, 1987.

[88] Michael Swain and Markus Stricker. Directions promising in active vision. CS

91–27, University of Chicago, November 1991.

[89] D. W. Thompson and J. L. Mundy. Motion-based motion analysis: Motion

from motion. In Robert Bolles and Bernard Roth, editors, Robotics Research:

The Fourth International Symposium, pages 299–309. MIT press, 1988.

[90] William Thompson. Combining motion and contrast for segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2(6), November

1980.

[91] William Thompson, Kathleen Mutch, and Valdis Berzins. Edge detection in

optical flow fields. In Proceedings of AAAI-82, Pittsburgh, PA, pages 26–29,

1982.

[92] William Thompson, Kathleen Mutch, and Valdis Berzins. Dynamic occlusion

analysis in optical flow fields. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 7(4):374–383, 1985.

[93] William Thompson and Ting-Chuen Pong. Detecting moving objects. In Pro-

ceedings of International Conference on Computer Vision, pages 201–208, 1987.

[94] John Tsotsos. A ‘complexity level’ analysis of vision. In Proceedings of Inter-

national Conference on Computer Vision, pages 346–355, 1987.

[95] Saburo Tsuji, Michiharu Osada, and Masahiko Yachida. Tracking and segmen-

tation of moving objects in dynamic line images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2(6):516–522, 1980.

[96] Shimon Ullman. Visual routines. Cognition, 18:97–159, 1984.

[97] Gilbert Verghese, Karey Gale, and Charles Dyer. Real-time, parallel motion

tracking of three dimensional objects from spatiotemporal sequences. In Vipin

BIBLIOGRAPHY 151

Kumar, editor, Parallel Algorithms for Machine Intelligence and Vision, pages

310–339. Springer-Verlag, 1990.

[98] Alessandro Verri and Tomaso Poggio. Against quantitative optical flow. In

Proceedings of International Conference on Computer Vision, pages 171–180,

1987.

[99] Terry Winograd and Fernando Flores. Understanding Computers and Cogni-

tion: A New Foundation for Design. Addison-Wesley, 1986.

[100] John Woodfill and Ramin Zabih. An algorithm for real-time tracking of non-

rigid objects. In Proceedings of AAAI-91, Anaheim, CA., pages 718–723. The

MIT Press, 1991.

[101] John Woodfill and Ramin Zabih. A real-time vision system for robots in un-

structured domains. In Proceedings SPIE conference, Sensor Fusion IV, 1991.

[102] John Woodfill and Ramin Zabih. Using motion vision for a simple robotic task.

In AAAI Fall Symposium on Sensory Aspects of Robotic Intelligence. AAAI,

1991.

[103] Brian Yamauchi and Randal Nelson. A behavior-based architecture for robots

using real-time vision. In IEEE International Conference on Robotics and Au-

tomation, pages 1822–1827, 1991.

