
 
 
 

Based on the paper in Proceedings of the IEEE Computer Society Workshop on Embedded Computer Vision,  
Conference on Computer Vision and Pattern Recognition, (New York, NY), June 2006. 

The Tyzx DeepSea G2 Vision System,  
A Taskable, Embedded Stereo Camera 

 
John Iselin Woodfill, Gaile Gordon, Dave Jurasek, Terrance Brown, and Ron Buck 

Tyzx, Inc., 
3895 Bohannon Dr.  

Menlo Park, CA 04025 
woodfill@tyzx.com 

 
Abstract 

 
   Our goal is to build vision systems suitable for 

deployment in devices that operate in demanding 
dynamic, variably lit, real-world environments. For such 
systems to be successful, not only must they perform their 
visual analysis well and robustly, but they must also be 
small, cheap and consume little power. Further, since 
volume deployments of such vision systems are still 
nascent, the systems must be taskable -- flexible enough to 
support many different uses.  

1 

 We have met our goal with the Tyzx DeepSea G2 
Stereo Vision System, an embedded stereo camera 
consisting of two CMOS imagers, a DeepSea II stereo 
ASIC, an FPGA, a DSP/Co-processor and a PowerPC 
running Linux, connected to the Ethernet. It is made 
practically taskable by the definition of a set of 
configurable visual primitives supported by specific 
hardware acceleration. These primitives include stereo 
correlation, color and depth background modeling, and 
2D and 3D quantized representations or projections of the 
range data. We have defined a common programming 
interface in which the visual primitives are available both 
in traditional workstation environments, supported in 
software, and on the G2 with hardware acceleration. 
Single G2s are deployed in mobile platforms such as 
robots and automobiles, while networks of G2s are 
deployed in tracking systems in public and private sites 
around the world.  

1. Introduction 
Large classes of commercial and consumer products 

have a requirement for visually sensing their environment 
and reacting to what is happening around them in real 
time. These products are deployed in demanding dynamic, 
variably lit, real-world environments.  For such systems to 
be successful, not only must they perform their visual 
analysis robustly, which often requires 3D data and high 
frame rates, but they must also be physically small, low 
cost, and low power.  A vision application running on a 
powerful workstation is not a viable solution for these 
products. Since volume deployment for embedded vision 

systems are still nascent, and engineering costs high, we 
argue that a practical embedded vision system product 
must also be flexible enough to support many different 
applications.  We have designed a new 3D embedded 
vision system, the Tyzx DeepSea G2 Stereo Vision 
System, to meet these demanding requirements; and it has 
already been deployed in multiple application spaces.   

1.1. The Case for 3D Embedded Vision Systems 
It is critical to base design requirements on several real 

applications. We specifically consider distributed person 
tracking for security applications, and autonomous 
navigation. 

3D sensing is an important modality for a vision 
platform. Many vision applications have traditionally 
relied only on 2D data, which is inherently sensitive to 
changing lighting, and requires computationally intensive 
algorithms for analysis of application relevant outputs. 
Now real time 3D sensors can be incorporated into vision 
systems to simplify data analysis [1,6]. These sensors 
make some applications, such as tracking of objects for 
security systems more robust and tractable. For other 
applications, such as navigation, 3D descriptions of the 
scene are critical. For example, potential obstacles must be 
evaluated to determine whether their 3D location, size, 
and trajectory relative to the vehicle path represent a threat 
to the vehicle. 

High frame rate and low latency are critical factors for 
many applications which must provide quick decisions 
based on events in the scene. Tracking moving objects 



 
 
 

from frame to frame is simpler at higher frame rates 
because relative motion is smaller, creating less tracking 
ambiguity.  In autonomous navigation applications, 
vehicle speed is limited by the speed of sensors used to 
detect moving obstacles.  In safety applications such as 
airbag deployment, the 3D position of vehicle occupants 
must be understood to determine whether an airbag can be 
safely deployed – a decision that must be made within tens 
of milliseconds.  

Bandwidth limitations are also an important 
consideration in the design of vision systems.  At high 
frame rates it becomes impractical to pass 2D or 3D image 
data out of the sensing system, particularly when several 
sensors are used together in the same application, such as 
distributed tracking systems.  The processing of the image 
data must instead be done close to the sensors, passing 
only lower bandwidth application specific data on to other 
subsystems.  Consider, for instance, a wide area tracking 
system based on stereo imagers (one color and one 
monochrome imager, producing 26 bits (10 bit Y, 8 bit U 
and V) and 10 bits per pixel respectively).  For 
640x480x30fps, we have ~330 Mbits of data per second 
coming out of the imagers.  If we feed this data into a 
stereo processor and down-sample the color image we 
might end up with as little as 200 Mbits of data per 
second.  If we actually process the range and color data to 
detect and locate people, we can reduce the information to 
a few bytes per person tracked per frame – perhaps 80 
Kbits per second.  For just one tracking camera, the 
bandwidth of data at any stage in the pipeline could be 
supported on the network. However, for a hundred 
tracking cameras, the left and right source data becomes 
33 Gbits per second, the color and range 20 Gbits, and the 
segmented track data might be about 8 Mbits per second. 
The only practical choice is for all the processing to 
happen before results are sent out of the vision system. 

For self contained vision systems to be actually 
deployed on ceilings, in cars, or on robots they must be 
small enough to fit in unused spaces. They cannot have 
fans or generate too much heat.  For battery powered 
systems, the power usage must be limited. These footprint 
and power requirements are the most basic system 
requirements and dictate that workstations or typical 
power hungry CPU’s of any kind cannot be used.   

Since stereo processing involves a large computational 
load that can still consume a high end CPU, it makes sense 
to use smaller, lower power dedicated hardware resources 
such as the Tyzx DeepSea II chip to perform stereo 
correlation.   

For obstacle detection or tracking, even after range is 
produced by special purpose hardware, processing range 
and color images at frame rates can be a demanding 
computational challenge  -- particularly for the sort of 
CPU suitable for an embedded system. Our approach to 

the problem of the vision computational load is to 
decompose the large computational task into primitives, 
visual primitives, that can be exposed in a software 
interface, and that can be efficiently implemented with 
hardware acceleration. Stereo correlation itself can be 
viewed as such a primitive.  Other visual primitives that 
we have identified include range and intensity/color based 
background modeling [2,4], and projection of the 3D data 
into a Euclidean 3D quantized volume, or a 2D quantized 
array. 

1.2. Related Work 
   Previous examples of 3D embedded vision systems 

exist that were not very powerful or did not meet power 
requirements for real deployment. Konolige [3] presented 
the SVM I, a DSP based embedded stereo camera that 
processes small stereo frames at 12 frames per second.  
Little CPU time was left to perform any interpretation task 
using the data.  Woodfill et al. [6] describe an embedded 
stereo camera consisting of an embedded Pentium Mother 
board along with a Tyzx DeepSea II processing board.  
This two board solution with a Pentium presented a fairly 
powerful computational environment, particularly since 
range was computed on special hardware.  However, 
power consumption and footprint were still high.   

Stein et al. [5] present the EyeQ, a single chip, 
monoscopic embedded vision system designed for a set of 
automotive applications.  This system has a couple of 
general purpose PowerPC engines and specialized engines 
for automotive specific tasks such as lane detection.  This 
is one of the few low power embedded visions systems 
built, but does 2D rather than 3D processing, and is 
dedicated to a particular application.  

1.3. Outline 
In this paper, we present the G2, a powerful, multi-

purpose embedded stereo camera.  First we describe the 
structure of the G2, followed by a description of the 
various visual primitives for which we have provided 
hardware acceleration.  Given a description of the system 
and its accelerated visual primitives, we illustrate how two 
applications can be mapped to the G2 architecture.  
Finally we conclude with some performance numbers, 
some lessons learned and thoughts about future work. 
 

2 



 
 
 

2. The Structure of the G2 
The G2 is a PowerPC based computer that runs Linux.  

At the component level (See Figure 2), the G2 consists of 
an embedded PowerPC chip (666 MHz 440GX) 
connected to two imagers, a Tyzx DeepSea II chip, an 
Analog Devices Blackfin DSP, and some memories using 
an FPGA.  This basic configuration is extremely flexible –  
any component can be configured to talk to any other 
component by means of FPGA configuration.   
Implementing a new configuration for the FPGA, in 

principle a simple task, can take weeks or months of 
effort.  Thus the G2 is designed with a particular dataflow 
architecture / FPGA configuration in mind that allows the 
various components to be reconfigured at a course level of 
granularity. This approach allows the system to be applied 
to distinct tasks without modifying the firmware in the 
FPGA.  

  This dataflow architecture is shown in Figure 3.  The 
basic dataflow model is a generalized form of the model 
that applies to any computer that is intended to perform 
vision tasks:  on a frame by frame basis the CPU has 
access to input imagery.  Left and right rectified source 
imagery can be DMAed into main memory on the 
PowerPC.  In principal this data is enough to perform any 
vision or stereo based task.  However, the cost of 
computing stereo depth at frame rate alone would swamp 
the embedded PowerPC. To perform real-time vision 
tasks, the PowerPC has access to several other input 
image sources on each frame: a range image, a foreground 
image, a “Projection image” and some output from a DSP 
that in turn has access to the source images, range image, 
foreground image and “Projection image”. 

  To configure the G2 for a particular task, the user 
selects which vision primitives are to be used (see 
following section), what parameters to use for the various 
vision primitives, which image data should be sent to the 
DSP, and which image data should be DMAed into 

PowerPC memory.  The programming task is completed 
by writing code to interpret input images on the PowerPC 
and/or the DSP if necessary. 

The G2 consumes about 15 Watts.  It has a 100Base T 
Ethernet interface that can accept Power-over-Ethernet.  A 
Linux kernel and root file-system are stored on the 
Compact Flash memory card so that the system can boot 
into Linux on power-up. 
  As a matter of development convenience, we have 
designed a common software interface that is available 
both on Windows and Linux workstations as well as on 

the G2.  On the G2, many of the visual primitives are 
accelerated in the FPGA and DSP, while many are pure 
software on a workstation.   

  As the G2 has a general purpose CPU running Linux, 
it is possible to edit, compile, and debug code from a 
telnet window running on the embedded CPU.   Since we 
have a common software interface shared between the 
workstation and the G2, it is usually easier to develop and 
debug code on the workstation, cross compile the code for 
the PowerPC on the workstation, test the compiled code 
on the G2, using NFS, and finally transfer the debugged 
executables onto the G2 compact flash.  
 

 
FPGA 

 

Left 
Image

r

Right 
Image

r

Tyzx 
DeepSea 
Processo

r  

SRAM 

RAM 

 
Blackfin 

DSP 

Flash Boot

 
PowerPC

440GX 

Flash Boot

RAM 

Compact 
Flash 

Ethernet

DRAM 

Figure 1. G2 hardware layout 

PowerPC CPU 

DSP Coprocessor 

Data Projection 

Background Model 

Stereo 
Correlation

Rectification 

L R 
Images 

Rectified Image 

Range Image 

Foreground 

Figure 2. G2 data flow 

3 



 
 
 

3. Hardware Accelerated Visual Primitives 
The idea of hardware accelerated visual primitives is 

like that behind the primitives in OpenGL – they represent 
a decomposition of the computational problem.  The 
primitives in this decomposition are chosen to meet three 
constraints: that they be useful for many tasks, that the 
primitives account for a large part of the computational 
load, and that they be suitable for hardware acceleration.  
In OpenGL, these primitives are defined with respect to a 
graphical display, in the G2, the primitives are defined 
with respect to a left and right incoming image stream, as 
well as outputs of other image primitives.  

As the G2 is an embedded stereo camera, the visual 
primitives are aimed at producing and interpreting range 
data.  Since stereo correlation is both a computationally 
intensive task, and a common sub-component of vision 
algorithms, it is an obvious visual primitive to support.  
Background modeling based upon range and color 
requires huge amounts of memory bandwidth and finds a 
place in many tracking algorithms – hence it is our second 
visual primitive.  A third primitive produces 2D and 3D 
quantized representations or projections of the range data.  
This is an expensive, yet commonly useful visual 
primitive.  Lastly, a programmable DSP is included in the 
G2 as a generalized visual primitive -- an additional 
resource for doing expensive, regular image operations. 

 
Tyzx DeepSea II Stereo Correlation Chip 

Input Image Size (max) 512 x 2048 (10 bit) 

Stereo Range  

      Search Window 52 Disparities 

      Sub-pixel Localization 5 Bits 

      Z output 16 Bits 

      Max Frame Rate 200 fps (512x480) 

Power < 1 watt 

Pixel Disparities/ Second 2.6 Billion 

Figure 3. Tyzx DeepSea II specifications 

3.1 Stereo Processing 
In the G2, the primary visual primitive is the Stereo 

Correlation Processor.  It takes as input the left and right 
images, and creates as output a range image.  In the 

software model, the input images are implicit, just as the 
display is implicit in OpenGL.  In the G2, the Stereo 
Correlation Processor is accelerated using a Tyzx 
DeepSea II correlation chip.   The performance of this 
chip is characterized in Figure 4 [6]. 
 

3.3 Background Modeling 
  Background Modeling takes as input range and intensity 
data and generates a pixel-by-pixel 
foreground/background map of the image based on the 
nature of the pixel’s change from previous frames. This 
task may require roughly 400 bits per pixel to be read 
from memory, and roughly 200 bits per pixel be written to 
memory. For 400 x 300 images at 30 frames per second, 
background modeling requires over 2 Gbits of memory 
bandwidth per second. In addition, matching and updating 
each pixel involves several comparisons and updates. 
Offloading this task to dedicated hardware reduces the 
workload of the CPU and is a key factor enabling the use 
of a smaller, embedded CPU.  This background modeling 
visual primitive implements an algorithm similar to that 
presented by Gordon et al. [2] that is designed to model 
the scene statistics using both color intensity and dense 
range. The output is a binary foreground mask image. 

3.4 Projection Spaces 
Projection of the 3D data into a Euclidean 3D quantized 

volume, or a 2D quantized array produces a data 
representation that is useful for many applications and is 
more compact that a full 3D cloud of points. The 
Projection Space primitive provides a mechanism to 
define and create 2D and 3D projections where clipping 
and quantization parameters can be defined independently 
for each of the three axes. A rigid transform (in terms of a 
rotation and translation) can also be specified that is 
applied to the X,Y,Z data points before the projection.  

 The Projection Space visual primitive takes as input the 
range image and, if desired, the foreground mask created 
by the Background Model primitive. If the foreground 
mask is used, only the foreground pixels will be processed 
into the Projection Space.  The coordinates of a raw range 
pixel are in terms of the row (v) and column (u) of the 
range image, whereas Z is represented in metric units 
chosen by the user. Each range pixel (u, v, Z) is first 
converted to Euclidean coordinates, (X, Y, Z), using the 
camera calibration parameters such that the units of X and 
Y are the same as the units of Z.  A 3x3 rigid transform is 
then applied to produce (X’, Y’, Z’).  The definition of the 
projection axis is used to map (X’, Y’, Z’) into the 
projection space. Each pixel will either fall outside the 
volume, or into one of the defined projection cells.  For 
each cell defined, the final output is a total count of pixels 

4 



 
 
 

falling into the cell, and if using a 2D projection array, the 
minimum and maximum value on the projection axis of all 
pixels mapped to the cell. 

There is also a mode which enables scaling of the 
counts in the projection space cells such that they are 
approximately invariant to distance.  When using raw 
pixel counts, a closer object will generate higher cell 
counts than a farther object even if they are the same 
physical size. This is because at closer distances each 
pixel subtends a smaller surface area. The scaled mode 
will compensate for this effect, making it easier to process 
the resulting projection array to identify objects relevant 
to the application. 

3.5 DSP/Co-processor 
  A fourth, more general visual primitive is provided by a 
somewhat general purpose DSP or Co-processor.  DSPs 
are ideal for very regular image operations with 
specialized memory maintenance operations, zero 
overhead loops, etc.  In the G2 dataflow, the DSP is 
viewed as another hardware accelerator that has more user 
configurability than the other primitives, i.e., it can be 
programmed.  But like the other visual primitives, its 
control flow is fixed.  A certain set of input images is 
selected, the DSP processes the input images each frame, 
and sends an output frame to the PowerPC.  

4. Installed Applications 
The low power and small footprint of the G2 embedded 

vision system enables the use of powerful real time 3D 
vision processing in applications and products that cannot 
support the use of traditional general purpose 
workstations. Two excellent examples are person tracking 
systems, which require networks of smart visual sensors to 
be mounted on walls and ceilings, and visual navigation 
for autonomous robotic platforms, which are battery 
powered and are often physically small. The vision 
primitives for the G2 platform support the processing 
requirements of both these applications.  G2 platforms are 
already in use in installed person tracking systems and 
autonomous navigation systems. We describe these 
installed systems in more detail in the following sections. 

4.1. Person Tracking 
The value of real time stereo sensors for person tracking 

applications has been described previously [6]. The direct 
measurement of the 3D location of each person creates 
more robust results than systems based on 2D images 
alone. Fast frame rates simplify the matching of each 
person’s location from frame to frame. The fact that each 
stereo camera is already calibrated to produce absolute 3D 
measurements also greatly simplifies the process of 

registering the cameras to each other and the world during 
installation.  

To be practical for real installations, however, factors 
such as network bandwidth, power requirements, wiring 
requirements, and physical size were all key design 
criteria for the G2 platform.  Limited network bandwidth 
in large installations dictates that most image processing 
must occur next to the sensor, sending only low 
bandwidth results such as locations and descriptions of 

tracked objects, over the network.  Each sensor must also 
host enough processing power to perform tracking in its 
view space.  Each system must be unobtrusive – fans are 
not practical. This places a limit on the power dissipation. 
The system must also be small enough to mount easily to 
the ceiling or wall. Wiring should be minimized; the G2 is 
designed to run with a single cable, power over Ethernet, 
or two connections, Ethernet and power. 

3D person tracking is a computationally intense task, 
but the use of hardware accelerated visual primitives 
offloads most of the processing from the G2 CPU.  The 
3D range image and intensity image are used by the 
background model primitive to filter the incoming data to 
keep only pixels that are dynamic, that is, that do not 
match well to the typical background data.  The remaining 
data, expressed as a binary foreground mask, is processed 

Figure 4. Electroland tracking application on the 
observation deck of the Rockefeller Center. 

5 



 
 
 

by the Projection Space visual primitive.  In this step, the 
orientation and position of the camera, computed during 
registration, are used to transform each 3D foreground 
pixel into a coordinate system aligned with the floor. The 
data is then projected into quantized cells on the floor 
plane. In this 2D representation, objects with a high 
surface area perpendicular to the floor stand out and 
people are maximally separated.  Segmented and tracked 
results from many tracking camera are sent to a single 
system to produce a final tracking map. 

Our partner, Electroland, has used a network of four 
G2s running our person tracking application in their 
interactive architectural installation created for Target 
Corporation in the new observation deck of Rockefeller 
Center, NYC, USA. Individuals who enter the space are 
assigned a personality by the 3-D tracking system and 
have individualized light patterns follow them around the 
space.  This installation represents a challenging 
environment for vision based tracking systems because of 
the constantly changing lighting.  The walls and ceiling 
are covered with dynamic colored light displays and 
ambient light is highly impacted by two sets of glass doors 
opening onto the observation deck, as well as an entire 
glass wall through which a lower level of the building is 
visible. The installation is active during daylight and 
nighttime conditions. A traditional 2D visual tracking 
system, which would incorporate a background model 
based on reflected light intensities, would not be an 
effective solution for this environment. Direct stereo 
measurements of depth on the walls and floor will, 
however, be robust and remain constant despite the 
dynamic lighting conditions. 

4.2. Autonomous Navigation 
Obstacle detection and other navigation tasks are 

facilitated by 3D data of the scene in front of the vehicle. 
Laser scanners have been commonly used to provide this 
data, but high frame rate dense stereo data platforms such 
as the G2 are now being considered as an alternative or 
additional sensor.  The G2 provides a full frame of 3D 
data at each update rather than one scan line, which is 
important in detecting moving obstacles.  The G2 can run 
at higher frame rates.  Although adding scene illumination 
is always an option, stereo is inherently a passive sensor, 
which is desirable in many applications. The G2, whether 
located with the stereo imagers or separately, has a smaller 
footprint than a laser scanner, which for many platforms is 
a critical design feature. The G2 platform also has much 
lower power consumption and volume cost.  The G2 also 
can handle much of the processing of the 3D data, 
offloading many computationally consuming tasks from 
the other processors on the vehicle. 

As with most vision applications, hardware acceleration 
of as much of the vision processing task as possible is a 
big win for frame rates and power consumption. The 
projection space primitive was designed to provide a 
representation of the scene that is useful in obstacle 
detection and other navigation tasks.  The rigid 
transformation can be used to put the data into 
approximate alignment with the road – compensating for 
installed camera rotation and translation. The data can 
then be projected onto the plane. This will produce high 
values when there are objects with sufficient surface area 
perpendicular to the road and 2D quantized images are 
much more efficiently processed than a full 3D cloud of 
points. The G2 CPU is typically able to run the full object 

detection and path planning algorithm, providing only 
high level data to the other vehicle processors. 

Another of our partners, iRobot, is developing a fully-
autonomous urban reconnaissance platform[7].   The 
image in Figure 6 shows a G2 system installed on a 
compact agile robotic vehicle. The G2 is used to run 
autonomous obstacle detection and path planning 
algorithms. The small size of the payload bay of the 
vehicle represents a real limitation on the types of sensors 

G2 with 6 cm 
baseline 

Figure 5. iRobot Wayfarer: Autonomous robot 
navigation application. 

6 



 
 
 

that it can deploy. The G2 is a perfect solution for 
providing a powerful 3D vision platform in a small 
footprint. The computing resources available on the G2 
also offload the robot’s limited main CPU, enabling the 
computation for obstacle detection to run directly on the 
G2. The separation between the lenses of this G2 is 6 cm. 
The configuration is used to monitor the space from .5 to 
20 meters in front of the vehicle. 
 
Acknowledgements: 
Tyzx would like to thank Damon Sealy at Electroland and 
Brian Yamauchi at iRobot for providing pictures used in 
this paper.  The iRobot Wayfarer project was funded by 
the U.S. Army Tank-automotive and Armaments 
Command (TACOM) Tank-Automotive Research, 
Development, and Engineering Center (TARDEC). 
 

5. Conclusion 
  An embedded stereo vision platform with a well 

designed decomposition of hardware accelerated visual 
primitives can be extraordinarily useful.  Several 
applications have been ported to the G2, showing that the 
resulting system is indeed practically taskable. 

  The performance of the G2 can be characterized by its 
frame rate for the whole datapath as described. At 30 
frames per second, for 400x300 images, images are fed 
into the range processor, range results and rectified images 
are fed into background modeling, the results of 
background modeling can be fed into the projection 
primitive; finally, color, range, and projection results are 
DMAed into the PowerPC.   

  In developing the G2, several of our most basic fears 
were proved well-founded.  You don’t “just recompile 
C++ into Verilog”  The process is a lot more than a push 
of a button.  Floating point must be converted to fixed-
point, conditional loops need to be converted to operations 
that can be performed everywhere.   Correct Verilog is of 
course, not sufficient; everything must be shoehorned into 
running at the desired clock frequency.  Similarly, you 
don’t “just recompile your C++ for a DSP” – to get the 
desired performance boost, the code must be redesigned 
and/or massaged to run well on the DSP. You don’t “just 
recompile Linux for a new platform.”  You probably need 
a new boot loader for the system.  Any special purpose 
drivers must be done again, etc. 

  In the future, we anticipate identifying additional 
visual primitives and accelerating them in hardware, 
making the G2 applicable for a wider range of 
applications.  In addition, as we begin to understand the 
power of the visual primitives, and as we get closer to 
high volume applications, we will pursue more 
integration, developing new ASICs to attain our ultimate 
goals – visually competent, smaller, cheaper, and lower 

power systems that can be more easily deployed in the 
world. 

References 
[1] S. G!kt"rk, H. Yalcin, and C. Bamji. A Time-Of-Flight 
Depth Sensor - System Description, Issues and Solutions. In 
Proceedings of IEEE Conf. on Computer Vision and Pattern 
Recognition, Washington D.C., USA, June 2004. 
[2] G. Gordon, T. Darrell, M. Harville, J. Woodfill, Background 
Estimation and Removal Based on Range and Color, In 
Proceedings of IEEE Conf. on Computer Vision and Pattern 
Recognition, (Fort Collins, CO), June 1999.  
[3] K. Konolige, Small vision sytem: Hardware and 
implementation, In Proceedings of Eighth International 
Symposium on Robotics Research, Hayama, Japan. (1997)
[4] C. Stauffer and W. Grimson, Adaptive background mixture 
models for real-time tracking. In Proceedings IEEE Conf. on 
Computer Vision and Pattern Recognition, pages 246--252, 
1999. 
[5] G. Stein, E. Rushinek, G. Hayun, A. Shashua, A Computer 
Vision System on a Chip: a case study from the automotive 
domain, In Proceedings of the IEEE Conf. on Computer Vision 
and Pattern Recognition (CVPR'05) – Workshop on Embedded 
Computer Vision, (San Diego, CA), June 2005.
[6] J. Woodfill, G. Gordon, R. Buck, Tyzx DeepSea High Speed 
Stereo Vision System, In Proceedings of the Workshop on Real 
Time 3-D Sensors and Their Use, IEEE Conf. on Computer 
Vision and Pattern Recognition, (Washington, D.C.), June 2004. 
[7] B. Yamauchi, "Wayfarer: An Autonomous Navigation 
Payload for the PackBot," Proceedings of AUVSI Unmanned 
Vehicles North America 2005, Baltimore, MD, June 2005. 
 
 
 
 
 
 
 
 
 
 
 

7 


